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The Escherichia coli chemotaxis signaling pathway has served as a model system
for the adaptive sensing of environmental signals by large protein complexes. The
chemoreceptors control the kinase activity of CheA in response to the extracellular
ligand concentration and adapt across a wide concentration range by undergoing
methylation and demethylation. Methylation shifts the kinase response curve by orders
of magnitude in ligand concentration while incurring a much smaller change in the
ligand binding curve. Here, we show that the disproportionate shift in binding and
kinase response is inconsistent with equilibrium allosteric models. To resolve this
inconsistency, we present a nonequilibrium allosteric model that explicitly includes
the dissipative reaction cycles driven by adenosine triphosphate (ATP) hydrolysis.
The model successfully explains all existing joint measurements of ligand binding,
receptor conformation, and kinase activity for both aspartate and serine receptors.
Our results suggest that the receptor complex acts as an enzyme: Receptor methylation
modulates the ON-state kinetics of the kinase (e.g., phosphorylation rate), while ligand
binding controls the equilibrium balance between kinase ON/OFF states. Furthermore,
sufficient energy dissipation is responsible for maintaining and enhancing the sensitivity
range and amplitude of the kinase response. We demonstrate that the nonequilibrium
allosteric model is broadly applicable to other sensor-kinase systems by successfully
fitting previously unexplained data from the DosP bacterial oxygen-sensing system.
Overall, this work provides a nonequilibrium physics perspective on cooperative sensing
by large protein complexes and opens up research directions for understanding their
microscopic mechanisms through simultaneous measurements and modeling of ligand
binding and downstream responses.

bacterial chemotaxis | ligand binding | kinase activity | allosteric model | nonequilibrium systems

Most biological machines that are responsible for important functions are made of
multiple components (proteins and RNAs) that work together in a cooperative manner.
Examples include the ribosome for protein synthesis (1) and the bacterial flagellar
motor for locomotion (2). One of the most important models in describing the
cooperative function of a large protein complex with multiple subunits is the Monod–
Wyman–Changeux (MWC) model (3). Originally developed to describe cooperative
allosteric interactions in a multi-subunit enzyme such as hemoglobin (3, 4), it has
been extended to describe signal transduction (5) in large protein complexes such as
the bacterial chemoreceptor cluster with heterogeneous components (6–8) and gene
regulation by transcription regulators (9) [see the recent book by Phillips (10) for
a comprehensive review]. However, despite its many successes, the MWC model
is highly simplified, assuming equilibrium interactions between components of the
protein complex and a two-state (all-or-none) behavior for the entire complex. We
now know that many biological machines operate out of equilibrium through the
hydrolysis of energy-rich molecules such as nucleotide triphosphate (NTP) including
ATP and guanosine triphosphate (GTP). Moreover, rich structural information of these
complexes has been revealed by high-resolution imaging techniques such as cryoelectron
tomography (11, 12). In light of this new information, it becomes necessary to examine
the validity of the MWC assumptions and to elucidate whether the MWC model still
provides a faithful description of the underlying process in these protein complexes.

Here, we reexamine the applicability of the MWC model to signal transduction in
chemoreceptor clusters found in almost all bacteria (13). Bacteria use these membrane-
bound chemoreceptors to sense and to respond to changes in their environments, such as
chemical concentrations, temperature, pH, and osmotic pressure (14). There are around
20,000 methyl-accepting chemotaxis proteins (MCP) in an Escherichia coli cell (15).
They form large clusters near the cell poles (16) and serve important cellular functions
such as signal amplification (17–19) and accurate adaptation (20–22). Together with
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quantitative functional experiments, modeling work using vari-
ations of the MWC model has played an important role in
understanding the mechanisms underlying key functions such
as signal integration, adaptation, and amplification (23, 24).

The E. coli chemotaxis signaling pathway involves recep-
tor complexes composed of membrane-bound chemoreceptors,
cytoplasmic histidine kinase CheA, and an adaptor protein
CheW. The complex transduces the signal induced by the
binding of ligands to the chemoreceptors to the kinase activity of
CheA, which modulates the swimming behavior of the bacterium
by phosphorylating the intracellular response regulator CheY. In
order to remain sensitive at varying levels of external stimuli,
the kinase activity is modulated by an adaptation mechanism.
Adaptation is achieved by the methylation and demethyla-
tion of the chemoreceptor catalyzed by CheR and CheB,
respectively.

The kinase response of the complex can be successfully
described by a generalized MWC model (7), which captures
the significant change in the sensitivity of kinase response as
receptor methylation level changes. Since the MWC model is an
equilibrium model that satisfies detailed balance in all transitions
between internal states, it predicts that varying the receptor
methylation level should induce similar changes in both ligand
occupancy and kinase response (25). However, this prediction is
inconsistent with in vitro experiments by Borkovitch et al. (26)
and Amin and Hazelbauer (27) for aspartate receptors (Tar) and
by Levit and Stock (28) for serine receptors (Tsr), which showed
that while changes in receptor methylation shift the kinase
response curve over a significant range of ligand concentration,
the corresponding shift in ligand occupancy is much smaller.
Moreover, Vaknin and Berg (29) measured in vivo the physical
responses of the receptors in the absence of both the histidine
kinase CheA and linker protein CheW. As the methylation level
increases, they again found a much smaller shift in the response
of bare receptor oligomers than that of the kinase response of the
full complex. These disproportionate shifts of response curves
suggest a nonreciprocal (asymmetric) coupling between the
receptor state and the kinase activity, which is a nonequilibrium
mechanism fundamentally incompatible with the equilibrium
MWC model. So far, this fundamental discrepancy remains
unexplained.

In this paper, we present a nonequilibrium model that explains
both the ligand binding and the kinase activity for different
receptor methylation levels. First, we develop a parametric test
to systematically demonstrate that the existing measurements
cannot be consistently explained by the MWC model or
similar equilibrium models. This motivates us to develop a
nonequilibrium model which extends the MWC approach by
adding a kinetic description of the ATP-driven phosphorylation–
dephosphorylation (PdP) cycle of the downstream signaling
molecule CheY controlled by the kinase CheA and the phos-
phatase CheZ. Crucially, the receptor complex operates as
an enzyme exerting kinetic control on the phosphorylation
energy barrier. Receptor methylation enhances kinase activity
by reducing the phosphorylation energy barrier, which does
not feed back to the receptor. This nonreciprocal interaction
enables disproportionate shifts in response curves. Indeed, the
model is capable of consistently fitting all available simultaneous
measurements of ligand binding, receptor conformation, and
kinase activity for E. coli chemotaxis (27–29). Crucially, the
experimentally observed behavior is only enabled by a sufficiently
strong nonequilibrium driving in the PdP cycle, which is
provided by ATP hydrolysis. If the driving is below certain

thresholds, the model fails to simultaneously capture ligand
binding and kinase activity, especially the discrepancy in their
shifts when receptor methylation level changes. Finally, this
nonequilibrium allosteric model should be generally applicable
to other signaling pathways involving dissipation, in particular,
sensor-kinase systems that are driven out of equilibrium by the
PdP cycle. Indeed, the model successfully captures both the
binding and kinase activity measurements in the bacterial oxygen-
sensing system DosP (30).

Results

Equilibrium Allosteric Models Fail to Explain Both Ligand
Binding and Kinase Response. To start, we focus on the in
vitro measurements by Amin and Hazelbauer on Tar receptors
embedded in native membrane vesicles (27). The receptors were
fixed at different levels of methylation by substituting glutamates
(E) with glutamine (Q) at the receptor methyl-accepting sites. By
comparing dose–response curves of receptors with zero or three
modifications, it was found that methylation shifts the kinase
response curve significantly but only induces a much smaller
shift in ligand binding (Fig. 1B).

Before introducing the nonequilibrium allosteric model, we
first examine whether the behaviors (especially ligand binding
and kinase activity) of the chemoreceptors can be consistently
described by an equilibrium allosteric model. To this end, we
present a parametric test that systematically detects inconsistency
between the measurements and the MWC model without fitting
the data to any specific function. Other equilibrium models,
such as Ising models, can be ruled out using a similar approach
(SI Appendix).

In the MWC model, the receptor complex has N identical
binding sites, whose occupancy is denoted by �i (i = 1, 2 . . .N );
�i = 0, 1 represents a vacant or occupied receptor, respectively.
The receptor methylation level is denoted by m. The MWC
model assumes all-or-none behavior for the whole complex.
Namely, the receptor activity s is either on (s = 1) or off (s = 0).
The energy (Hamiltonian) of the receptor complex is given by

H = (−� + E0s)
N∑
i=1

�i + Ess, [1]

with � = log([L]/Ki) being the chemical potential for binding,
which depends on ligand concentration [L] and a dissociation
constant Ki. Es is the energy difference between the active and
inactive receptor states in the absence of a ligand. Each occupied
binding site increases this energy difference by E0 > 0, thereby
suppressing activity at high occupancy. In this section, for the
purposes of testing whether the MWC can simultaneously cap-
ture ligand binding and kinase response, we allow all parameters
to vary with methylation: E0(m), Es(m), and Ki(m). Even with
this most general methylation dependence, we will see that the
MWC model cannot capture the measured response curves.
However, in our nonequilibrium extension to the MWC model,
introduced in the next section, the primary effect of methylation
is kinetic. There, the equilibrium parameters E0 and Es are
assumed to be independent of methylation and the dissociation
constant Ki is only weakly dependent on methylation.

Given the MWC Hamiltonian, the average receptor activity is

〈s〉 =

(
1 + eEs

(
1 + [L]/Ki

1 + e−E0 [L]/Ki

)N
)−1

, [2]
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A B

Fig. 1. Measured aspartate binding and kinase activity of Tar receptor signaling complexes (27) are inconsistent with equilibrium MWC models. (A) A parametric
test plotting the measured aspartate receptor occupancy (�exp) against the inferred occupancy �̃(sexp , smax , smin) from MWC model with N = 1,3, and∞ and
for methylation levels m = 0 and 3. The solid curves correspond to independent Hill function fits to the data, the filled circles (•) are the (�exp , �̃) pairs inferred
from binding measurements, and the open diamonds (♦) are pairs inferred from measurements of CheY phosphorylation. The gray shaded area shows 95%
confidence regions from the Hill function fits. The transformed data lie far from the diagonal (black dashed line), indicating that the system is nonequilibrium.
(B) Fitting the kinase activity for m = 0 (dashed) and m = 3 (solid) with equilibrium MWC models (N = 1,3,10) captures the CheY-P measurements (Upper) but
not the aspartate binding (Lower). In the lower panel, +/− A/W indicate measurements with and without CheA and CheW proteins.

and the average binding is

〈�〉 =
[L]

Ki + [L]
(1− 〈s〉) +

[L]
eE0Ki + [L]

〈s〉. [3]

In the limit of large Es, we have 〈s〉 � 1, so the binding
curve becomes a Hill function with Hill coefficient nH = 1 (no
cooperative binding), consistent with experiments using vesicle-
bound chemoreceptors (27). The maximum activity smax = (1+
exp(Es))−1 is reached at [L] = 0, and the minimum activity
smin = (1 + exp(Es + NE0))−1 occurs at [L] =∞.

The MWC model has seen great success in capturing the
methylation dependence of the downstream CheY-P response
(7, 25), even in the presence of time-varying stimuli (31). These
studies suggest the following basic mechanism: Methylation
affects the energy for the active state, Es(m), and thereby shifts
the kinase response curves across orders of magnitude in ligand
concentration. However, this mechanism does not take into
account measurements of ligand binding.

Here, we examine whether the binding and activity curves
measured at the same methylation level are both compatible with
the equilibrium MWC model. This can be done by eliminating
the concentration variable [L] from Eqs. 2 and 3 to obtain a
parametric relation between 〈s〉 and 〈�〉. For example, solving
Eq. 2 for [L] and substituting the solution into Eq. 3 gives the
mean occupancy as a function of the receptor activity,

〈�〉 = �̃(〈s〉, smin, smax), [4]

where smax and smin are the maximum and minimum activity
mentioned above, which can be determined from experimental
measurements of kinase activity. For any fixed N , smax and smin
uniquely determine the value of the energy parameters E0 and Es,
which gives �̃ as a function of (〈s〉, smax, smin). The expression of �̃
for finiteN can be complicated, but its behavior can be illustrated
in small and large N limits. For N = 1, the equilibrium model
simplifies to �̃ = (smax−〈s〉)/(smax− smin), which equates ligand
binding with the normalized kinase activity. On the other hand,

for large N , the inferred receptor occupancy converges to

�̃ = log
smax(1− 〈s〉)
〈s〉(1− smax)

/
log

smax(1− smin)
smin(1− smax)

. [5]

The curves for intermediate N lie between these two extreme
limits.

To test the validity of the equilibrium MWC model, we
transform the measured kinase response curves for two different
methylation levels (27) according to Eq. 4 and plot the inferred
occupancy (�̃) against the corresponding measurements of the
receptor occupancy (�exp).* If the equilibrium model is valid,
all the points should collapse onto the diagonal � = �̃ for
some choice of N . However, the data for both methylation levels
(m = 0, 3) lie well off the diagonal for any choice of N (Fig. 1A),
indicating that the system (even for a single methylation level)
cannot be described by the equilibrium MWC model with anyN .

The intuition behind this inconsistency is that the MWC
model cannot capture the relative shift between binding and
response curves. To demonstrate this, we fit the MWC model
only to the measured kinase activity (CheY-P level) and compare
the resulting binding and activity curves with experiments
(Fig. 1B). The MWC model successfully captures kinase activity
(Upper panel) but does not produce the correct binding curves
(Lower panel). Instead, it predicts that the increase in binding
and the decrease in kinase activity should occur at around the
same ligand concentration. This prediction is inconsistent with
experiments, which found the sharpest change in kinase activity
occurring at a concentration that is either much lower (m = 0)
or higher (m = 3) than that of binding. Moreover, as the
methylation level changes from m = 0 to m = 3, the shift
in activity curves is much greater than the shift in binding curves.
These results suggest that the MWC model is unable to capture
the data either at a single methylation level or the change between
different methylation levels. Similarly, fitting the MWC model

*Following previous studies, we assume the measured CheY-P concentration is propor-
tional to activity in the model: [CheY-P] = A0〈s〉, where A0 is the saturating concentration
of CheY-P. We use A0 = 60pM chosen to be slightly above the maximum CheY-P
concentration measured in this set of experiments (the results are robust to increasing
the value of A0).
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to the measured binding curves results in discrepancies with the
measured kinase activity (SI Appendix). Note that these fittings
are only shown to build intuition. They are all encompassed by
the parametric test (Fig. 1A), which offers stronger evidence by
revealing inconsistency with the MWC model without relying
on fitting with any assumptions or any particular formulation of
the loss function.

Similar results hold for more complex equilibrium models: For
example, if we treat the measured kinase activity a as a separate
degree of freedom from the receptor activity s. Assuming the two
activities are coupled by equilibrium mechanisms, with the active
receptor promoting kinase phosphorylation, we add the following
terms to the MWC Hamiltonian,

Ha = (F0 + ΔFs)a, [6]

where F0 is the energy of the active kinase when the receptor is
inactive and F1 = F0 +ΔF < F0 is the energy when the receptor
is active. The average activities of the joint Hamiltonian H +Ha
are linearly related,

amax − 〈a〉
amax − amin

=
smax − 〈s〉
smax − smin

. [7]

Therefore, our analysis above also applies to equilibrium
models with additional binary degrees of freedom. In SI Appendix,
we show that this linear relation holds for arbitrary chains of
binary variables coupled via equilibrium interactions. Hence,
these types of models are also inconsistent with the experiments.

Beyond MWC models, the binding and kinase response
cannot be simultaneously captured by equilibrium Ising-type
models (for various spatial structures), where the receptor
activities si are variable across the receptor complex (SI Appendix).

A Nonequilibrium Allosteric Model Captures Both Ligand Bind-
ing and Kinase Activity for Tar. The fact that equilibrium models
cannot capture the binding and kinase response measurements

indicates that the E. coli chemotaxis signaling pathway operates
out of equilibrium. We now present a nonequilibrium allosteric
model that extends the MWC model and can simultaneously
capture the measured binding and response curves as well as their
disproportionate shifts due to methylation.

In this model (pictured in Fig. 2A), the receptor conformation
is again represented as a binary variable s with inactive (0) and
active (1) states. It is coupled to ligand occupancy �i by an
equilibrium MWC model. The MWC Hamiltonian is given
by Eq. 1 with Es and E0 independent of methylation m and
Ki(m) weakly methylation dependent. This choice is motivated
by the observation that binding curves are nearly unaffected by
the removal of CheA and CheW, which are responsible for the
coupling between receptors (Fig. 1B). The phosphorylation state
of the response regulator CheY is represented by a new binary
variable a, with dephosphorylated (0) and phosphorylated (1)
states. The measured CheY-P concentration is proportional to
the average phosphorylation variable 〈a〉. The transitions between
states a = 0, 1 involve phosphorylation–dephosphorylation
(PdP) cycles (blue boxes), whose reaction rates depend on both
the conformation s and the methylation m. The system operates
out of equilibrium sustained by continuous ATP hydrolysis in
the PdP cycle, and the average receptor behavior is determined by
the probability distribution P(a, s) of the nonequilibrium steady
state.

When the receptor is active (s = 1), it catalyzes the phosphory-
lation of CheY through the autophosphorylation of the histidine
kinase CheA, which subsequently transfers the phosphate group
to CheY. In our model, we do not consider all the detailed steps
of phosphotransfer from ATP to CheY and assign an overall rate
k1 to describe the phosphorylation of CheY. For simplicity, we
also assume that the phosphorylation rate is negligible when
the receptor is inactive (s = 0). The dephosphorylation of
CheY-P is catalyzed by CheZ, with a dephosphorylation rate kz
independent of the receptor state. In experiments where no CheZ
is present, kz represents the spontaneous dephosphorylation

A B

Fig. 2. The nonequilibrium allosteric model for the chemoreceptor. (A) Schematics of the model. The receptor conformation (s) is coupled to the ligand
occupancy at N binding sites (�i , i = 1,2, . . . , N) via an equilibrium interaction described by the MWC model with the energy function HMWC. The receptor
switches between ON and OFF states at rates ! and !′, which depend on the ligand occupancy. The CheY phosphorylation state a is controlled by the
phosphorylation–dephosphorylation (PdP) cycle driven by ATP hydrolysis. The phosphorylation is catalyzed by the active receptor (s = 1) with a rate k1 (we
assume the phosphorylation rate to be negligible in the OFF state, k0 = k′0 = 0). The dephosphorylation of CheY-P is catalyzed by CheZ with a rate kz , independent
of the receptor state. (B) The model captures both the measured CheY-P level (Upper) and aspartate binding (Lower) for Tar receptors. All experimental data
are from Amin and Hazelbauer (27). See SI Appendix for the detailed fitting procedure and parameter values. We set N = 10, GATP = 20, Es = 5, but the fits are
robust to variations in these parameters (SI Appendix).
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rate of CheY-P (32). To ensure thermodynamic consistency,
all reactions are reversible with reverse rates k′1 = k1e−G1 and
k′z = kze−Gz . The PdP cycle is driven by ATP hydrolysis. The
free energy dissipated per PdP cycle per CheY molecule is denoted
by GATP (measured in units of kBT ), which places the following
thermodynamic constraint on the reaction rates:

GATP = log
k1kz
k′1k′z

= G1 + Gz , [8]

where G1 and Gz are the free energy released by phos-
phorylation and dephosphorylation, respectively. Note that
k1kz
k′1k′z

= eGATP � 1, which clearly indicates a violation of
detailed balance and the far-from-equilibrium nature of our
model.

Motivated by structural details of the bacterial chemoreceptors
(Summary and Discussion), we assume that receptor methylation
can affect kinase activity by changing the energy barrier in
the phosphorylation reaction, which scales k1 and k′1 by the
same factor. On the other hand, the dephosphorylation rate
kz remains independent of m. The ratio of the two rates can
be written as k1/kz = exp

[
Ep − ΔEB(m)

]
, where Ep is a

constant and ΔEB(m) captures the allosteric effect of receptor
methylation on the energy barrier for phosphorylation. Here, we
adopt the simplest model where the energy barrier has a linear
dependence on the methylation level, i.e. ΔEB(m) = −�mNm
(with a barrier shift of �mm per receptor). The energy difference
G1 = log(k1/k′1) is not affected by methylation.

The receptor conformation s can switch between ON and
OFF states at rates! and!′, whose ratio is defined as � = !/!′.
Throughout our analysis, switching is assumed to be much faster
than the PdP reactions (!,!′ � k1, kz), which means s is in fast
equilibrium with �. Since the coupling between s and � does not
involve any nonequilibrium driving, we can describe it with the
MWC free energy (Eq. 1). Matching the switching dynamics to
the MWC model gives the rate ratio:

� ≡
!
!′

= e−Es
(

1 + [L]/Ki

1 + e−E0 [L]/Ki

)−N
. [9]

The measured CheY-P concentration is proportional to the
steady-state average:

〈a〉 =
1

1 + P
=

1

1 + kz+(kz+k′1)�
k′z+(k′z+k1)�

, [10]

where P ≡ P(a=0)
P(a=1) is the probability ratio of being not

phosphorylated versus phosphorylated. We consider the limit
in which all reverse reactions are suppressed, i.e., k′i/ki =
exp(−Gi)→ 0, which implies that the nonequilibrium driving
must be sufficiently strong (i.e., large dissipation) for both
reactions in the PdP loop. In this limit and with the additional
assumption eEs � 1, the activity reduces to

〈a〉 ≈

(
1 + eEs−Ep−�mNm

(
1 + [L]/Ki

1 + e−E0 [L]/Ki

)N
)−1

. [11]

This expression has the same form as the MWC activity Eq. 2
with a new effective energy for the active state Eeff

s = Es − Ep −
�Nm, which depends on the methylation level m. Given that the
MWC model (Eq. 2) has been successfully employed to fit the

CheY-P curves (Fig. 1B), we can expect a similar, if not better, fit
from the nonequilibrium model. Indeed, Fig. 2B shows that the
model successfully captures the CheY-P level of vesicle-bound Tar
receptors at all five methylation levels (27). While this experiment
measured CheY-P levels after a fixed reaction time (10 s), we make
the approximation that the CheY-P concentration has reached
the steady state. Taking into account the transient dynamics does
not noticeably affect the fit quality or parameters (SI appendix).

Since there is no feedback from the CheY phosphorylation
state to the receptor, the average receptor conformation 〈s〉 and
ligand occupancy 〈�〉 are given by the MWC model, Eqs. 2
and 3 respectively. For large Es, we again have 〈s〉 � 1 so
that the binding curve closely resembles a Hill function with
Hill coefficient nH = 1. Fig. 2B shows that the same set of
parameters used to fit kinase response also produces the correct
binding curves, which is a significant improvement from the
MWC model.

Why is the nonequilibrium model able to capture the
disproportionate shift of binding and kinase response curves due
to methylation while equilibrium models cannot? In equilibrium
models, methylation can only affect receptor behavior through
thermodynamic control, i.e. by changing the energy difference
between different states through Es and E0. Since equilibrium
interactions are always reciprocal (symmetric), the fact that ligand
binding controls receptor activity means that there has to be an
equally strong feedback from the receptor state to the ligand
occupancy. Therefore, this type of control shifts the binding
and kinase response curves by similar amounts, inconsistent
with experimental observations. In the nonequilibrium model,
however, the interaction between ligand binding and kinase
activity can be nonreciprocal (asymmetric): The receptor complex
acts as an enzyme that exerts kinetic control by changing the
phosphorylation energy barrier ΔEB(m). In the absence of strong
feedback from the substrate (CheY) to the receptor complex,
these changes in the energy barrier enable amplified shifts in
the kinase response while maintaining modest shifts in binding
response. For this mechanism to function, however, the system
must be driven out of equilibrium (in this case by continuous
ATP hydrolysis). Energy dissipation is required to enable kinetic
control, which has no impact on the steady-state distribution
if the system is in equilibrium, and is necessary to maintain the
asymmetric coupling between the phosphorylation state a and the
receptor state s. As shown later, the response amplitude vanishes
in the absence of energy dissipation.

Further Confirmation of the Nonequilibrium Model: Receptor
Conformational Changes and the Tsr Receptor. In addition
to explaining the disproportionate shifts in binding (�) and
kinase response (a) curves, our model also predicts different
dose–response curves for the receptor conformation (s) and
kinase response (a). Vaknin and Berg measured Tar receptor
conformation in vivo by fusing fluorescent proteins to the
C termini of chemoreceptors and measuring the intensity of
fluorescence resonance energy transfer (FRET) between receptor
homodimers (29). They measured the receptor conformation
for mutants with fixed methylation states EEEE (m = 0) and
QQQQ (m = 4) and the corresponding kinase response for
QQQQ (m = 4) and cheR+cheB+ mutants. The cheR+cheB+

cells do not have a fixed methylation state, but their kinase
response is known to be similar to QEEE mutants (m = 1) (31).
The shift of the kinase response curve† from m = 1 to m = 4 was

†In this experiment, kinase response is measured using a CheY-CheZ FRET pair. This
approach measures the concentration of the CheY-P/CheZ complex, which is proportional
to the CheY-P concentration and the kinase activity.
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found to be much more significant than the shift of the receptor
conformation curve from m = 0 to m = 4 (Fig. 3A, circles
versus triangles). Note that the conformation measurements were
carried out in the absence of kinase CheA and linker protein
CheW, which leads to noncooperative responses (N = 1).
Similar to the in vitro case discussed above, the discrepancy
between the dose–response curves suggests the necessity for a
nonequilibrium allosteric model. Indeed, as shown in Fig. 3A,
the model simultaneously fits both the receptor conformation
and kinase response curves for all mutants (solid and dashed
lines).

Another abundant chemoreceptor in E. coli is the serine
receptor Tsr, which regulates CheY phosphorylation using the
same microscopic mechanisms as the Tar receptor. Levit and
Stock (28) measured the binding and kinase response for Tsr
receptor complexes with three different receptor methylation
levels (Fig. 3B). This was achieved by expressing the WT
receptor without CheR or CheB to fix its methylation level and
subsequently increasing the methylation level by adding CheR
and S-adenosylmethionine (SAM) or decreasing the methylation
level by adding CheBc, the catalytic domain of CheB. As the
methylation level varied between these three conditions, the
serine concentration required to inhibit kinase activity varied
by more than two orders of magnitude, while the binding
affinity only changed by two-fold (from Kd = 10 μM to
Kd = 20 μM). The disproportionate shift in binding and kinase
response curves of Tsr receptors is similar to that found for Tar
receptors, which is inconsistent with equilibrium models. Once
again, the discrepancy between these shifts can be fully captured
by the nonequilibrium allosteric model (Fig. 3B, solid and
dashed lines).

The Minimum Dissipation and the Critical Effects of Nonequilib-
rium Driving. Our results above show that strong nonequilibrium
driving, which is provided by the free energy released during ATP
hydrolysis (GATP), is necessary to produce the experimentally
observed large shifts in kinase response curves with changes in
receptor methylation level (or other forms of modification to the
receptor) while leaving ligand binding relatively unchanged. This
raises the question of how much energy dissipation is required
for the system to exhibit behaviors that match the experimentally
observed ligand binding and kinase response.

To address this question, we evaluate the difference between
the average phosphorylation level 〈a〉 (proportional to the
CheY-P concentration) and its value in the infinite dissipation
limit 〈a〉∞ (given by Eq. 11) by expanding the full solution to the
nonequilibrium model (Eq. 10) in terms of the reverse reaction
rates k′1 and k′z . The leading order correction �〈a〉 ≡ 〈a〉 − 〈a〉∞
is

�〈a〉 =
k1kz�(1 + �)

(kz + (k1 + kz)�)2

(
1

PON

k′z
k1
− PON

k′1
kz

)
, [12]

where PON = �/(1 + �) is the probability of the receptor
being in the ON state (s = 1). The two terms in the
parenthesis have clear physical meanings: They quantify the
irreversibility of the PdP cycle by comparing the reaction rates
along or against the nonequilibrium driving (yellow arrow in
Fig. 2A). The first term k′z/k1 is the ratio between the reverse
dephosphorylation rate k′z (counterclockwise transition) and
the phosphorylation rate (clockwise transition) originating from
the CheY state (a = 0). Similarly, the second term k′1/kz is the
ratio between reverse phosphorylation (counterclockwise) and
dephosphorylation (clockwise) reactions from the CheY-P state
(a = 1). Since phosphorylation only occurs in the ON state,
while dephosphorylation occurs independent of the receptor
state, each term is weighted by an appropriate factor of PON.
To make each of these terms small requires large Gz and G1 (and
hence large GATP) to drive the PdP cycle sufficiently irreversibly
so that the system behaves close to the infinite-dissipation limit.

To quantify the minimum required dissipation GATP, we start
with Eq. 12 and focus on the extreme cases m = 0 and m = 4,
whose response curves envelop those of intermediate m. For m =
0, the CheY-P response is suppressed: The phosphorylation rate
k1 = kz exp(Ep) is much less than the dephosphorylation rate
kz (Ep ≈ −4 for our best fit in Fig. 2), so the first term in
Eq. 12 dominates. We aim to find the minimum dissipation
required to suppress the deviation from the infinite-dissipation
limit, i.e., |�〈a〉/ max(〈a〉∞)| < dth for some loss threshold dth,
where max(〈a〉∞) = (1 + eEskz/k1)−1. Since Es is large and
therefore � is small, this leads to k′z/(k1�) < dth, or

Gz > (−Ep + Es)− log(dth). [13]

Conversely, for m = 4, the CheY-P response is amplified by
the kinetic barrier shift due to methylation, and we have k1 = kz

A B

Fig. 3. Additional experimental evidence in support of the nonequilibrium allosteric model. (A) Fits of the nonequilibrium model to in vivo measurements of
receptor conformational changes and CheY-P response by Vaknin and Berg (29). Conformation measurements were performed without CheA/CheW (N ≈ 1).
The cheB+ cheR+ measurement has an effective methylation level m ≈ 1 (31). N indicates receptor conformation; ◦ represents kinase response. (B) Fits of the
nonequilibrium model to in vitro measurements of serine binding and CheY-P response of Tsr receptors by Levit and Stock (28). Measurements were done
for WT cells in the absence of CheR or CheB (green) or in the presence of CheBc (low methylation, red) or CheR and S-adenosylmethionine (high methylation,
purple). N indicates receptor vacancy 1− �; ◦ represents kinase response; the solid and dashed lines are fits with N = 10.
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exp(Ep + 4�mN ) � kz . Therefore, the second term in Eq. 12
dominates. Again requiring this term is small compared to the
maximal infinite-dissipation activity leads to k′1/k1 < dth, or

G1 > − log(dth). [14]

Adding these two inequalities gives an operational threshold
for GATP,

GATP > Gmin = −Ep + Es − 2 log(dth). [15]

From our large-dissipation (GATP = 20) fit in Fig. 2B, Ep −
Es ≈ −4, and the fitting error is ddata = 0.13. Setting dth = ddata
leads to Gmin = 8.0, which is the minimum dissipation energy
needed to drive the system to have the experimentally observed
behaviors shown in Fig. 2B.

As given in Eq. 8, the total dissipation energy (GATP) can be
decomposed into two parts: GATP = G1 +Gz where G1 and Gz
are used to suppress the reverse reactions for the phosphorylation
and the dephosphorylation processes, respectively. In the infinite
dissipation limit with G1, Gz → ∞, all the reverse reactions
can be neglected, and we obtain the exact expression for the
kinase activity given in Eq. 11, which agrees quantitatively with
the experiments. For finite values of G1 and Gz , the behavior
of the model can be different. The difference between the
phosphorylation levels at finite and infinite dissipation can be
quantified by

d(G1, Gz) =
4∑

m=0
wm

√〈
[〈a〉(m, [L])− 〈a〉∞(m, [L])]2

〉
, [16]

where the weight wm = 1/〈a〉∞(m, 0) normalizes curves by
the infinite-dissipation maximal activity at the corresponding
methylation state, and the average is calculated by sampling
uniformly over the activity range of 〈a〉∞. Fig. 4A shows
d(G1, Gz) for different values of G1 and Gz . As expected, the
difference is small in the upper right region when bothG1 andGz
are sufficiently large, which defines the operational regime of the
chemoreceptor sensory system. The estimated thresholds Eqs. 13
and 14, shown by white dashed lines, accurately predict when

the models have quantitatively similar kinase activity. Moreover,
they are indeed limited by methylation levels m = 0 and m = 4
as shown by the contours of the output discrepancy for individual
methylation levels (white solid lines). The blue dashed line shows
the operational threshold Gmin = 8.0, where the difference is
only small for a particular pair of (G1, Gz) (i.e., the intersection
of the white dashed lines). In contrast, for a typical physiological
value GATP = 20 (33) (blue solid line), (G1, Gz) is allowed to
vary within a much larger range (i.e., between the points where
the blue line crosses the white dashed lines) without deviating
from the experimentally observed kinase response.

Next, we investigate the role of energy dissipation in the
signaling pathway. In particular, we find that it enhances the
amplitude and the sensitivity range of the response. To illustrate
this, we tune the nonequilibrium driving GATP and track how
it affects the CheY-P response amplitude and the half-maximum
aspartate concentration (k1/2) for each methylation level. To
demonstrate their typical behaviors, we consider two paths shown
by the purple arrows in Fig. 4A, with the corresponding responses
shown in Fig. 4 B and C. Both paths start from GATP = 20
(G1 = Gz = 10) and move towards the equilibrium limit
GATP = 0 by decreasing G1 with fixed Gz (until G1 = −10 in
equilibrium) or by decreasing Gz with fixed G1 (until Gz = −10
in equilibrium). In each case, the amplitude decreases to zero
as the dissipation approaches zero. Indeed, the receptor state
affects CheY phosphorylation through kinetic control, which
has no effect in the equilibrium limit. Furthermore, nonzero
dissipation enables the large spread in CheY-P response curves.
Because our model has no feedback from the phosphorylation
state to the receptor, and therefore no response in equilibrium,
k1/2 becomes ill-defined in the GATP → 0 limit, which explains
its sudden drop in Fig. 4 B and C. However, even if there is
feedback from CheY to the receptor, the response can be nonzero
in the equilibrium limit but the relation Eq. 7 holds and dictates
the spread between kinase response curves must be comparable
to that for binding curves, which is small. Interestingly, the
k1/2 scaling is qualitatively different depending on the path
taken to equilibrium: reducing G1 leads to monotonically
increasing k1/2, while decreasing Gz leads to monotonically
decreasing k1/2.

A B C

Fig. 4. The dependence of the kinase response on the energy dissipation. (A) The difference d(G1 , Gz) (Eq. 16) between the CheY phosphorylation level
predicted by the nonequilibrium allosteric model at finite values of dissipation energies (G1 and Gz ) and that in the infinite dissipation limit. The solid white
lines are contours at d = dth = 0.13 for m = 0 and m = 4. The white dashed lines are theoretical predictions of the operational thresholds G1,th = − logdth and
Gz,th = −Ep + Es − logdth. The solid and dashed blue lines indicate the physiological value GATP = 20 and the operational threshold GATP = 8.0, respectively.
The purple arrows indicate paths taken in (B and C) toward the equilibrium limit. (B and C) The amplitude (Upper) and the half-maximum aspartate level k1/2
(Lower) as the dissipation (G1 , Gz) varies along the paths outlined in (A).
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The dissipation energies G1 and Gz are connected to biochem-
ical parameters via the following relationships,

G1 = G0
ATP − G0

CheY−P + log
[ATP]/[ATP]0
[ADP]/[ADP]0

, [17]

and
Gz = G0

CheY−P + log[Pi]/[Pi]0, [18]

where G0
ATP and G0

CheY−P are the phosphate bond energies for
ATP and CheY-P, respectively and [ATP]0, [ADP]0 and [Pi]0 are
the reference concentrations.

A possible scheme to test our model could be to measure kinase
dose–response curves while tuning the [ATP]/[ADP] ratio to
change G1. For a fixed value of Gz within the operational regime,
the response amplitude and sensitivity range will decrease as the
[ATP]/[ADP] ratio decreases. For example, if Gz = 10, as is
the case in Fig. 4B, the response amplitude for m = 4 will
decrease by about 5% when the [ATP]/[ADP] ratio decreases
by three orders of magnitude.‡ Note that this estimate is nearly
the worst-case scenario, since our choice of initial (G1, Gz) has
Gz close to its threshold value. If the true Gz is larger than 10,
a much larger reduction in amplitude will occur for the same
decrease in the [ATP]/[ADP] ratio (e.g., 51% for Gz = 13).
Furthermore, since our model is coarse-grained (for example, it
ignores intermediate steps in the phosphotransfer between CheA
and CheY), the predicted dissipation rate is smaller than that of
the real system (35, 36). Therefore, the real kinase response may
be more susceptible to changes in ATP concentration than the
model predicts. Another possible scheme to test our model is to
varyGz by controlling the inorganic phosphate concentration [Pi]
as shown in Fig. 4C. Quantitative measurements of the amplitude
and sensitivity range using one of the proposed schemes above
may help more precisely pinpoint the operational regime of
chemoreceptor signaling complexes.

Summary and Discussion

In this paper, we have developed a nonequilibrium allosteric
model of bacterial chemoreceptors motivated by the dispropor-
tionate shifts in ligand binding and kinase response curves caused
by receptor methylation, which has been a long-standing puzzle
in the field. The model explains all existing simultaneous mea-
surements of ligand binding, receptor conformation, and kinase
response within a unified framework that takes into account
both allosteric interactions within the receptor-kinase complex as
well as the nonequilibrium phosphorylation–dephosphorylation
reaction kinetics driven by energy dissipation.

How intracellular energy is used to drive information and
signaling processes in living cells is a fundamental question in
biological physics. Recently, much progress has been made in
elucidating the critical effects of energy dissipation in a wide
range of cellular functions such as the ultrasensitive bacterial
flagellar motor switch (37), accurate sensory adaptation (38),
error correction (39–41), gene expression control (42), and
biochemical oscillation and synchronization (43, 44). Here, by
combining experimental data and theoretical modeling, we show
(given the small variations in ligand binding with methylation)
that strong dissipation, fueled by ATP hydrolysis, is responsible
for enhancing the amplitude and sensitivity range of the sensor-
kinase signaling process. While dissipation is not strictly necessary

‡Changes in ATP concentration of nearly this magnitude (400-fold) have been used in
studies of the processive motion of molecular motors (34).

for these signaling benefits (7, 25, 31), equilibrium mechanisms
that produce a similar kinase response necessarily have a broad
sensitivity range for ligand binding, contrary to experiments.

Below, we discuss the possible microscopic mechanism under-
lying the nonequilibrium allosteric model, the generality of our
model, and some future directions to extend our model.

Possible Microscopic Mechanism: Ligand Binding and Methy-
lation Cause Different Conformation Changes. The proposed
microscopic mechanism underlying the nonequilibrium allosteric
model is summarized in Fig. 5. The average phosphorylation
state of the response regulator CheY is controlled by the methyl-
accepting chemotaxis proteins (MCP, blue box) through CheA
and CheW (green box). The MCP can undergo multiple distinct
conformational changes (characterized by different conforma-
tional degrees of freedom s and s̃), each of which affects the
phosphorylation rate of CheY in different ways.

The conformation s is predominantly controlled by ligand
binding (�) via an equilibrium mechanism captured by the MWC
energy function HMWC (methylation may have a minor effect on
s through Ki, Es, or both). When s = 0 the receptor is in the OFF
state, which has a very large phosphorylation energy barrier and
therefore almost no kinase activity (in other words, EB � 1 for
the s = 0 state). When s = 1, the receptor is in the ON state with
a finite (but not unique) kinase activity, whose intensity depends
on the methylation m. Given that the receptor methylation sites
are away from the kinase CheA, we hypothesize that a different
conformation degree of freedom s̃ mediates the allosteric control
of methylation on the kinase activity. In particular, increasing
m induces a conformational change to s̃(m) that lowers the
energy barrier EB and thereby increases the phosphorylation rate
of the ON state. The change in the barrier height is exactly
ΔEB(m) as defined in our nonequilibrium allosteric model. It is
important to note that while s acts like a binary switch that can be
described by a two-state model, s̃ may represent multiple or even
a continuous spectrum of conformations, which lead to different
kinetic rates or equivalently different barrier heights in the CheY
phosphorylation reaction.

The idea that ligand binding and receptor methylation induce
different conformational changes in the chemoreceptor has been
suggested in the experimental literature (45, 46) and is supported
by recent in vivo crosslinking measurements of Tsr receptors (47),
which found differing receptor structure changes in response

Fig. 5. Illustrative summary of the nonequilibrium allosteric model. The
receptor can undergo changes in two separate conformational degrees of
freedom s and s̃, in response to ligand binding and methylation, respectively.
Each conformation affects the phosphorylation of CheY through CheA, but
in different ways: s controls switching between the kinase OFF state, with
no phosphorylation of CheY, and ON state, which has a finite energy barrier
for phosphorylation. In the ON state, s̃(m) lowers the energy barrier EB (by
different amounts ΔEB(m) depending on the methylation level) to increase
the phosphorylation rate. The phosphorylation reaction, controlled through
these two mechanisms, together with dephosphorylation catalyzed by CheZ
(not illustrated here) determine the steady state phosphorylation level of
CheY.
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to ligand binding and methylation. In particular, the change
in conformation (quantified by the fraction of crosslinking
products) induced by ligand binding is about twice as large as
the corresponding change between methylation levels m = 0 and
m = 4. Such discrepancy suggests that the conformation degree
of freedom probed by crosslinking is more strongly associated
with the conformation change due to binding than that due to
methylation, which implies that binding and methylation affect
different conformation degrees of freedom (s and s̃).

Another line of evidence comes from the dynamical properties
of the cytoplasmic helical domains of nanodisc-inserted receptors,
which have been measured using electron paramagnetic reso-
nance (EPR) spectroscopy (48, 49). It was found that increasing
methylation reduces the mobility of the helical structure but
preserves the mobility difference among different functional
regions and between companion helices belong to the same alpha-
helical hairpin. In contrast, the conformation change induced
by ligand binding has no detectable effect on helical mobility.
Since helical mobility is primarily affected by methylation, similar
to the conformation s̃ in the model, we conjecture that helical
dynamics (as quantified by mobility measurements of the spin
labels) may play a role in tuning the phosphorylation energy
barrier in the receptor ON state.

These findings directly support the idea of distinct confor-
mational changes (s and s̃) used in our model, which leads to
the following emerging picture for chemoreceptors operation:
Ligand binding induces a significant conformational change
characterized by a piston-like motion of helices toward the cell
interior (50), which also plays the functionally important role
of switching the receptor from active to inactive. On the other
hand, methylation leads to more subtle changes in the helical
conformation and dynamics (mobility), thereby modulating the
kinetic properties of the active state. More structural insight into
the conformation states is needed to more concretely disentangle
the differing effects of ligand binding and methylation. For
example, repeating recent FRET measurements of nanodisc-
inserted Tar receptors (51) at different methylation levels would
help to clarify this picture.

Both equilibrium and nonequilibrium mechanisms can be
used to enhance the amplitude and dynamic range of the
sensory output (kinase response) in the chemotaxis signaling
network (7, 25). We have found, however, that strong dissipative
driving is required to simultaneously explain the input (ligand
binding) and output. Are there advantages to burning energy to
implement signal enhancement via nonequilibrium mechanisms?
To operate in equilibrium requires reciprocal interactions be-
tween components of the system: There must be strong feedback
from the methylation state that modifies the receptor binding
pocket (perhaps via conformational or electronic changes) to
drastically change binding affinity. We conjecture it is more
structurally feasible for methylation (which occurs well below
the cell membrane) to impact conformational states downstream
(at the kinase) than upstream (receptor binding pocket, outside
the membrane). EPR spectroscopy measurements show that
changes in helical dynamics with methylation are indeed more
significant in the protein (kinase) interaction domain than in
the so-called HAMP domain just below the cell membrane (49).
Again, further experimental studies examining how methylation
impacts the receptor conformation along its various functional
domains would help test this hypothesis.

The microscopic mechanism proposed here may also be
helpful for understanding adaptation via receptor methylation
and demethylation processes catalyzed by CheR and CheB,

respectively. While our work has focused on experiments where
the methylation levels are fixed, the activities of CheR and
CheB can depend on the receptor conformational changes. More
specifically, just as the kinase activity of CheA studied in this
work, the enzymatic activities of CheR and CheB might be
controlled by both ligand concentration [L] (through s) and
methylation levelm (predominantly through s̃), which are critical
for the feedback control that leads to accurate adaptation. It is
also possible that the CheR and CheB activities are controlled by
other conformational degrees of freedom that depend on both m
and [L]. Further experimental studies are needed to elucidate the
microscopic origins underlying the feedback control mechanism
mediated by the enzymatic activities of CheR and CheB.

Generality of the Nonequilibrium Allosteric Model: Application
to Other Two-Component Systems. Beyond chemotaxis, our
model should be broadly applicable to other two-component
signaling systems, which have been studied extensively in E. coli
and other bacteria (52). Here, we illustrate these applications
with the E. coli oxygen sensor protein DosP (30, 53, 54).
Increasing oxygen concentration promotes DosP’s ability to
hydrolyze cyclic di-GMP, an important bacterial second messen-
ger that triggers downstream responses (55, 56). Previous work
measuring both oxygen binding and phosphodiesterase activity
of DosP as functions of oxygen concentration reported that
the two measurements cannot be consistently explained by an
equilibrium model (30). Indeed, inconsistency with equilibrium
MWC models can be more systematically demonstrated using
the parametric test introduced in this work (Fig. 6A). A slightly
generalized version of the nonequilibrium model (SI Appendix)
is able to capture both the binding and the phosphodiesterase
activity curves. As shown in Fig. 6B, it captures both the sharpness
and sensitivity range difference between the binding and activity
curves. In contrast, as established by the parametric test, the
MWC model can only capture either but not both response
curves (SI Appendix).

Since many of these two-component systems involve the
hydrolysis of energy-rich molecules such as NTP, we expect
simultaneous measurements of ligand binding and downstream
activity dose–response curves to reveal potential inconsistencies
with equilibrium models that are widely adopted. Indeed,
inconsistency with equilibrium models has also been reported
for the FixL/FixJ system (57). Large discrepancies between
the half-maximal concentrations for binding and activity have
also been observed for the PhoP/PhoQ system (58), suggesting
that it operates out of equilibrium. Overall, the theoretical
framework presented here enables a deeper understanding of the
mechanism of two-component systems by fitting simultaneously
to measurements of binding and enzymatic activity.

More broadly, we expect that the nonequilibrium allosteric
model developed here may be useful for understanding other
biological signaling systems that operate out of equilibrium, such
as the G-protein coupled receptor (GPCR) signaling pathways
which are driven out of equilibrium by GTP hydrolysis. Simulta-
neous measurement and modeling of the receptor binding and the
output activity may reveal important insights into these signaling
pathways.

Future Directions: Structure-based Nonequilibrium Models
for Large Protein Clusters. Besides application to other two-
component systems, another extension of this work is to better
incorporate structural information. In the introduction, we noted
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A B

Fig. 6. The nonequilibrium allosteric model captures the ligand binding and phosphodiesterase activity of E. coli DosP system for O2 sensing. (A) A parametric
test plotting the inferred binding �̃ (from the equilibrium MWC model) against measured �. The triangles and circles are inferred (�, �̃) pairs from binding and
activity measurements, respectively. The dashed line is a guide for the eye obtained by fitting raw data to a Hill function. (B) The oxygen binding (blue) and
DosP phosphodiesterase activity (orange) and the best fit by our model (solid lines). N = 4 is used since DosP forms tetramers (59). See SI Appendix for details
of the fit.

that the MWC model has two major simplifications: It is equi-
librium and it neglects the rich spatial structure of large protein
complexes. We have addressed the first of these shortcomings
by developing a minimal nonequilibrium model of allostery that
is sufficient to explain most of the existing measurements of
chemotactic signaling. Looking forward, incorporating spatial
structure into the nonequilibrium model will allow us to probe
one of the most important questions in biology: How does
structure determine function? As the structural information
for these complexes becomes available thanks to the recent
development of high-resolution techniques such as cryoelectron
tomography, the challenge is how this structural information can
be used to understand the functions of these large complexes.
E. coli chemoreceptor clusters form a beautiful hexagonal lattice
structure by tiling core units made up of two trimers of receptor
dimers bound with a CheA dimer and two CheW (12, 60).
Developing a nonequilibrium model containing these spatial
details will be essential for understanding a variety of recent

experimental discoveries including asymmetric activity switching
times (61, 62), activity fluctuations in wild-type cells (61, 63, 64),
emergent asymmetric coupling in mixed receptor complexes (19),
and slow logarithmic decay in activity on long timescales in
saturating ligand (65).

Data, Materials, and Software Availability. All study data are included in
the article and/or SI Appendix.
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