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Abstract. Non-equilibrium systems, in particular, living organisms, are main-
tained by irreversible transformations of energy that drive diverse functions.
Quantifying their irreversibility, as measured by energy dissipation, is essential
for understanding the underlying mechanisms. However, existing techniques usu-
ally overlook experimental limitations, either by assuming full information or by
employing a coarse-graining method that requires knowledge of the structure
behind hidden degrees of freedom. Here, we study the inference of dissipation
from finite-resolution measurements by employing a recently developed model-
free estimator that considers both the sequence of coarse-grained transitions and
the waiting time distributions: σ2 = σℓ

2+σt
2. The dominant term σℓ

2 originates
from the sequence of observed transitions. We find that it scales with resolution
following a power law. Comparing the scaling exponent with a previous estimator
highlights the importance of accounting for flux correlations at lower resolutions.
σt
2 comes from asymmetries in waiting time distributions. It is non-monotonic in

resolution, with its peak position revealing characteristic scales of the underlying
dissipative process, consistent with observations in the actomyosin cortex of star-
fish oocytes. Alternatively, the characteristic scale can be detected in a crossover
of the scaling of σℓ

2. This provides a novel perspective for extracting otherwise
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hidden characteristic dissipative scales directly from dissipation measurements.
We illustrate these results in biochemical models as well as complex networks.
Overall, this study highlights the significance of resolution considerations in non-
equilibrium systems, providing insight into the interplay between experimental
resolution, entropy production and underlying complexity.

Keywords: coarse-graining, stochastic thermodynamics, entropy production
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1. Introduction

Although the pursuit of ever-increasing resolution is a primary goal of technological
progress, there are many instances where coarser observations enhance features that
would otherwise be missed. A technique known as image binning lumps adjacent pixels
to increase the signal-to-noise ratio at the expense of resolution, and it has been an
important tool in the discovery of faint objects in the Universe [1, 2]. Regarding emer-
gent phenomena, the microscopic interactions between individual components often do
not suffice to appreciate complex large-scale phenomena, such as the chemical reac-
tions in Turing patterns [3] or the rules for Conway’s game of life [4]. In these cases,
improving measurement resolution might introduce additional computational require-
ments without aiding the detection of patterns. In a more routine experience, squinting
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the eyes can reveal a figure in optical illusions, such as hybrid images [5], with the
Monroe/Einstein image being the most famous example. Across resolution, observables
present different behavior and correlations, and hidden structures can be uncovered if
the right observable is measured. In this contribution, we demonstrate that for non-
equilibrium systems, quantifying energy dissipation across scales reveals new insight
into the underlying structures.

The vast majority of biological phenomena are intrinsically non-equilibrium pro-
cesses sustained by the continuous dissipation of free energy [6], whose quantification
is key for understanding the dynamics and energetics of biological functions and phys-
ical processes. Examples of these processes are adaptation [7, 8], error correction [9–12]
and environment sensing [13–20]. Multiple temporal and spatial scales can be involved,
while free energy is often harnessed at the molecular scale (e.g. from the hydrolysis of
energy-rich molecules such as adenosine triphosphate (ATP)), it can be used to drive
processes at much larger scales, such as pattern formation [21] and collective motion [22–
26]. These multiscale non-equilibrium processes can be studied in model experimental
systems, such as the actomyosin cortex of a starfish oocyte [27] and microtubule active
gels [28]. Understanding how much free energy is dissipated on these different scales can
lead to mechanistic insight into the intricacies of the underlying structure, such as the
characteristic timescale of active processes [27]. However, this is usually difficult due to
limitations on the scales and degrees of freedom that can be resolved in experiments. It
is crucial to elucidate how much information can be extracted from measurements with
finite resolution.

From a theoretical perspective, the thermodynamics of coarse-grained systems has
been studied in distinct scenarios, where the most prominent measure of dissipation is
the entropy production rate (EPR). Previous studies have considered the following dif-
ferent forms of coarse-graining: timescale separation [29–34] represents the possibility of
monitoring slow degrees of freedom while fast ones go undetected; decimation [35] con-
siders subsets of states and transitions as observables and can preserve the full entropy
production [36]; milestoning has been used to map continuous dynamics onto the frame-
work of discrete state space and ensures thermodynamic consistency [37, 38]; lumping
refers to merging states that cannot be resolved due to, e.g. proximity in space, and
often leads to a drastic decrease in EPR at the coarse-grained level [39, 40]. Forms of
coarse-graining can also be inspired by basins of attraction [41, 42], first-order phase
transitions [43, 44] and imperfect measurements [45, 46]. Obtaining the entropy pro-
duction or finding its upper/lower bounds provides key insight into the system, not
only because it estimates the real EPR or establishes the minimal thermodynamic cost
of a process, but it also establishes bounds for efficiency [47–49]. Although much pro-
gress has been made in extracting EPR from the statistics of coarse-grained dynamics,
e.g. using waiting time distributions [35, 50–60], it remains an open question how much
can be learned about the microscopic system from coarse-grained observations.

Here, we explore the scenario of measurement with limited resolution. These are
typically experiments where not all fine-grained degrees of freedom are distinguished by
the measurement apparatus, resulting in unresolved trajectories. To represent this scen-
ario, we coarse-grain the system by lumping states that are sufficiently similar, i.e. close
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in terms of a relevant distance measure. This allows us to examine the effect of vary-
ing resolution by changing the distance threshold for lumping states, which reveals the
dependence of the detected dissipation with resolution. Note that decreasing resolution
can always be done in post-processing, hence the data can be relied upon to unveil the
properties we discuss without the need for always improving resolution.

Measuring EPR in coarse-grained systems is generally difficult because it depends
on the statistics of current observables which, after coarse-graining, do not share simple
relations with fully resolved currents [61]. Previously, it was shown that the apparent
EPR at coarse-grained scales decreases following an inverse power law, with an expo-
nent that depends both on the topology of the state space and on the correlation of
the probability fluxes [39, 40]. When the fluxes are negatively correlated (i.e. frequent
back-and-forth transitions), the apparent EPR decreases faster than the number of
coarse-grained transitions. This suggests that harnessing the information encoded by
flux correlations might result in a more accurate estimation of the EPR. Indeed, recent
works have made significant progress in estimating the EPR of systems with partially
visible transitions through specialized estimators that take into account the correlation
(through sequence and waiting time) between coarse-grained transitions [50, 51, 59, 60].
Hence, it is natural to ask whether applying this approach to coarse-grained measure-
ments can reveal more information. We focus on an estimator that is obtained by the
sum of two contributions, one from a sequence of visible transitions and one from their
waiting times; they are affected in distinct ways by changes in resolution and will prove
to have different roles in the quantitative assessment of dissipation and internal scales.
Importantly, the estimator strictly bounds the EPR from below.

When applying the specialized estimator to limited-resolution measurements, we
find that the estimator leads to more accurate apparent values of EPR and provides
mechanistic insight into the dissipative scales. First, we show that the apparent EPR
estimated from this approach decreases with the coarse-grained scale following a power
law, with an exponent that is smaller than that of the direct coarse-graining approach.
Thus, accounting for flux correlation drastically improves EPR estimation. In addition,
we show that the irreversibility of the waiting time distribution follows a non-monotonic
relation with the coarse-grained scale, with its peak position reflecting the dissipative
scale of the system. This is similar to a non-monotonic relation reported in the actomy-
osin cortex [27], where the peak position corresponds to the dissipative timescale, and a
spatial counterpart to the detection of dissipative timescales through temporal coarse-
graining [62]. If multiple scaling regimes are present, their crossover may be detected
by a crossover in the EPR scaling. These results can be readily applied to experi-
mental data, as illustrated in biochemical reaction systems, such as Brusselator [63–65]
and Schlögl models [66, 67]. We also find similar relations in state networks with non-
regular topologies [68–71], which may be useful for analyzing time irreversibility in
complex networks [72, 73], such as neural networks present in brain dynamics [74–76].

2. Formalism

We consider a system whose dynamics is described by a continuous-time Markov chain
between discrete mesoscopic states. These states capture configurations that are of
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Figure 1. (A) Schematics of the theoretical framework for coarse-graining both
states and transitions. Circles and shaded boxes label microscopic and coarse-
grained states, respectively. Arrows represent microscopic transitions that will be
combined into coarse-grained transitions (boxes with dashed lines ℓα, ℓβ). (B) and
(C) Fraction of the entropy production captured by coarse-grained measurements
via estimators based on (B) the sequence of observable transitions and (C) the wait-
ing time distributions. In both panels, the model considered is a square lattice with
rates drawn from a standard lognormal distribution. Black dashed line represents
a trivial scaling relation in which the average observed EPR per transition remains
constant. Panel (B) starts with a 1024× 1024 state space at the fine-grained level,
while panel (C) has lattices of different sizes N 2.

thermodynamic relevance, and the transition rates between them include the influence
of the environment. The EPR quantifier of the statistical asymmetry between a process
and its time-reversal is given by:

σ =K
∑
ℓ

P (ℓ) ln
P (ℓ)

P
(
ℓ̄
) , (1)

where ℓ sums over all transitions with ℓ̄ being its reverse. P (ℓ) is the probability of
observing transition ℓ, and K is the dynamical activity defined as the average number
of transitions per unit time. We start with a microscopic description where all the trans-
itions are visible and the steady-state probability P (ℓ) can be obtained by solving the
master equation. After coarse-graining, only a subset of transitions remains observable,
leading to an observed activity Kobs <K.

To investigate how limited resolution affects dissipation, we adopt a coarse-graining
procedure that lumps together states and transitions identified by sufficiently similar
degrees of freedom. For illustrative purposes, we start with a square lattice where states
are identified by two degrees of freedom, which can be, for instance, spatial positions or
chemical concentrations (see figure 1(A)). The proposed procedure representing lim-
ited resolutions joins in a coarse-grained state (shaded boxes), ‘microscopic states’
belonging to a neighborhood of a given size. Not all microscopic states within the same
coarse-grained state can be resolved, and thus transitions between them become invis-
ible. Furthermore, all ‘microscopic’ transitions ℓα,i that stem from one coarse-grained
state to another are observed to have the same coarse-grained transition ℓα. A typ-
ical measurement yields a sequence of coarse-grained transitions and the waiting times
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between consecutive transitions (intertransition times): (ℓα, tα;ℓβ, tβ; . . .). The probabil-
ity of observing transition ℓα and, after time t, ℓβ, is given by the sum of the probabilities
of its constituent microscopic transitions:

P (ℓα,ℓβ; t) =
∑
i,j

P (ℓα,i,ℓβ,j; t) . (2)

Similarly, the joint probability of a sequence of transitions is given by the marginaliza-
tion:

P (ℓα,ℓβ) =

ˆ ∞

0

P (ℓα,ℓβ; t)dt=
∑
i,j

P (ℓα,i,ℓβ,j) . (3)

While the low-resolution dynamics is typically non-Markovian, which makes it dif-
ficult to estimate the true EPR, the experimenter can still compute the apparent (or
‘local’) EPR [76, 77] from the statistics of the observed coarse-grained transitions.
The simplest estimator accounts for the statistics of each coarse-grained transition
individually:

σ1 =Kobs

∑
α

P (ℓα) ln
P (ℓα)

P
(
ℓ̄α
) , (4)

where ℓα sums over coarse-grained transitions. This quantity is readily available from
empirical data since the probabilities can be estimated from the frequencies of observ-
able transitions. We bound the full EPR from below by only considering the absolute
probabilities of each transition, disregarding hidden degrees of freedom, the presence of
limited resolutions, and the fact that trajectories are non-Markovian.

Higher-order statistics can be included to build better estimators by also consider-
ing correlations between distinct transitions, usually in the form of joint probabilities.
Transition-based estimators that consider the statistics of pairs of transitions and the
waiting time between them have recently been developed [50, 51]. However, it is unclear
whether they rigorously bound EPR when observables are lumped transitions consist-
ing of many indistinguishable transitions. To overcome this, we consider an alternative
second-order estimator that strictly bounds EPR from below when applied to lumped
transitions [59, 60]. The estimator can be split into sequence and waiting time contri-
butions, σ2 ≡ σℓ

2+σt
2, where:

σℓ
2 =

Kobs

2

∑
α,β

P (ℓα,ℓβ) ln
P (ℓα,ℓβ)

P
(
ℓ̄β, ℓ̄α

) , (5)

and

σt
2 =

Kobs

2

∑
α,β

P (ℓα,ℓβ)DKL

[
P (t|ℓα,ℓβ) ||P

(
t|ℓ̄β, ℓ̄α

)]
, (6)

with DKL denoting the Kullback–Leibler divergence between waiting-time distributions.
Importantly, σ2 estimates the EPR by forming a lower bound on the EPR that is
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tighter than that of σ1 because it retains more information on the underlying dissipative
processes. Note that this estimator is agnostic to the experimental resolution, and can
be applied even when it is not known whether the experiment is able to capture all
transitions.

For applications, the probabilities of transitions ℓ and their waiting times can be
directly extracted from experimental measurements, with ℓ representing all transitions
between distinguishable states at a given resolution. Here, we illustrate the usage of
the estimator σ2 in model systems, where we use the survival operator approach (see
appendix A for details) to evaluate the joint distribution of transitions and waiting
times.

In the following, we observe that the two components of the more specialized estim-
ator, σ2, play different roles. Section 3.1 studies σℓ

2, which tends to be larger and more
important for estimating the total EPR. We find that it scales with resolution following
a power law. Section 3.2 focuses on the detection of internal scales through the distinct
exponents of σℓ

2 and the peak of σt
2. Both provide information on the internal structure,

such as the characteristic temporal and spatial scales of dissipation. Section 4 illustrates
all of these findings in two standard biochemical models, a biochemical oscillator (the
Brusselator model) and a system with multiple stable states (the Schlögl model). We
also extend the results to networks of complex topologies, where coarse-graining can be
done either by lumping in an embedded space or by random selection of visible trans-
itions. Finally, section 5 further discusses applications to experimental data and future
directions.

3. Properties of dissipation at different resolutions

The estimator σ2 measures the apparent dissipation at a given resolution, unraveling it
into contributions from sequences of transitions and from waiting times, revealing their
distinct behavior in terms of resolution changes. In this section, we explore two main
features of the estimator, namely the presence of scaling and the prospect of detecting
otherwise hidden scales, and their illustrations are provided in the following section.

3.1. Scaling of σ2

For simplicity, we put forward the arguments herein for a square lattice (figure 1(A)) but
they naturally extend to different topologies. Coarse-graining is done by merging nB-
by-nB square blocks into a single (coarse-grained) state; intrablock transitions become
hidden, and interblock transitions are lumped into nE visible transitions. Each interblock
transition ℓα is composed of nB microscopic transitions ℓα,i, which cannot be resolved in
measurements. As nB increases, the number of visible transitions decreases as nE ∝ n−2

B ,
causing a scaling in the number of terms of σ1 and σ2. The probabilities involved in
these expressions scale with nB in a nontrivial manner, partly due to the correlations
between fluxes. Yu et al [39] showed that σ1 decreases following a power law in terms
of the block size due to the statistical properties of the lumped fluxes represented by
P (ℓα). A similar argument can be made to show that σℓ

2 also scales with the block size
following a power law, where joint probabilities of transition pairs, P (ℓα,ℓβ), play the
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role of P (ℓα) (see equations (4) and (5)). Indeed, while P (ℓα) represents steady-state
fluxes in the state space, P (ℓα,ℓβ) plays the role of fluxes in the transition space, which
is the space spanned by all possible transitions of the system (or equivalently, by pairs
of consecutive states). As the resolution decreases, lumping in the transition space is
analogous to lumping in the state space, except that the dimension of the transition
space is much higher. Hence, we expect σℓ

2 to decrease following a power law, but the
scaling exponent may differ from that of σ1 since P (ℓα,ℓβ) follows a different statistical
structure to P (ℓα).

As shown in figure 1(B), for a system with i.i.d. random rates, both σ1 (blue) and
σℓ
2 (red) decrease following power laws with nE, consistent with the prediction above. In

general, σℓ
2 has a smaller exponent than σ1, which means that it is not only larger, but its

relevance rapidly grows at smaller resolutions. Thus, by accounting for joint probabilities
between consecutive coarse-grained transitions, σℓ

2 provides a more accurate estimate of
the EPR, which can be orders of magnitude better than σ1 for small resolutions (large
nB). The combined estimator σ2 = σℓ

2+σt
2 yields a similar performance (appendix B)

since it is dominated by σℓ
2.

One mechanism behind the different scalings is that the asymmetry P (ℓβ|ℓα) ̸=
P (ℓ̄α|ℓ̄β) captures some of the EPR associated with transitions internal to the coarse-
grained state, which is completely discarded in the direct lumping approach (σ1).
Interestingly, the scaling exponent for σℓ

2 is approximately 1 (black dashed line), rep-
resenting a linear scaling with the number of visible transitions, and the same exponent
is observed in further examples in the following sections. In other words, the EPR per
coarse-grained transition remains constant across resolutions.

3.2. Extraction of dissipative scales

In systems where the topological and dynamical structures are homogeneous across
length scales, such as the square lattice with random rates, the scaling of σℓ

2 persists
until coarse-graining approaches the largest scale. This largest scale is the system size
for the square lattice, but it can also be the size of a limit cycle or other types of
emerging structures. This indicates that, provided that the coarse-graining level does
not cross characteristic scales, the dissipation has the same scaling structure across
distinct resolutions. However, a system can exhibit drastically different dynamics at
different scales (either in state space or in physical real space), which leads to σℓ

2 scaling
with distinct exponents for each regime. Therefore, the presence of more than one scaling
in σℓ

2 indicates the existence of distinct dissipative scales, with a ‘kink’ marking their
separation. This will be illustrated in the Schlögl model (see next section).

Another component of the transition-based estimator is σt
2, which captures the

irreversibility associated with asymmetric waiting time distributions between coarse-
grained transitions, also called intertransition times. σt

2 is always non-monotonic with
the block size nB as follows: at the fine-grained level (nB = 1), the waiting time dis-
tribution is exponential and symmetric, leading to σt

2 = 0; at large nB, the number of
coarse-grained transitions is small, which also leads to small σt

2 (it eventually vanishes
when nB reaches the system size). Thus, σt

2 is maximized at an intermediate scale nB,m,
where the dynamics within coarse-grained states have maximally asymmetric waiting
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time distributions upon time reversal. The peak block size nB,m provides a natural and
model-free measurement of the characteristic scale of the dissipative dynamics.

For square lattice with i.i.d. random transition rates, σt
2 starts at zero at the

finest scale and reaches a maximum at nB = 2 before decreasing monotonically with
nB (figure 1(C)). Since the rates are drawn independently, this model does not exhibit
long-range structures. Hence, the lack of a characteristic scale is evidenced by the peak
of σt

2 falling at the first level of coarse-graining nB = 2. As the resolution decreases,
the waiting time distributions become increasingly less asymmetric under time reversal,
leading to a decrease in σt

2. Furthermore, the fraction of observable EPR approximately
collapses for different system sizes due to the homogeneity of these rates. When a sys-
tem has more intricate properties and presents an underlying structure, the peak might
reflect the spatial scale of such a structure instead of being localized at the first coarse-
graining step. Indeed, the connection between the peaks of irreversibility and internal
dissipative timescales is demonstrated theoretically (e.g. in biochemical oscillators) and
was found experimentally in the actomyosin cortex of starfish oocytes [27] (see next
section for detailed discussion).

4. Illustrations

4.1. Brusselator

To see whether the discussed properties hold in real biochemical systems, we turn to the
Brusselator model [63, 64], which describes a class of biochemical oscillators. Here, we
study the simplified Brusselator model [65] to avoid singular behavior at the first coarse-
graining iteration of the original Brusselator [39]. The model describes the dynamics of
two chemical species X and Y with reactions:

A
k1⇌
k−1

X, B
k2⇌
k−2

Y , 2X +Y
k3⇌
k−3

3X, (7)

with k±i being kinetic constants of each reaction ±i, and A and B molecules held at
constant concentrations. We assume mass-action kinetics, where the transition rates are
given by the product of kinetic constants and the concentrations of the substrate. For
instance, the forward rate of reaction three is k3[X]2[Y ], with concentrations [X] =Nx/V
and [Y ] =Ny/V . The state space is a 2D lattice spanned by the number of molecules
Nx and Ny, with horizontal, vertical and diagonal transitions corresponding to the three
reactions in equation (7). In certain parameter regimes, the system exhibits oscillations,
represented by a limit cycle in the state space (figure 2(A)).

Since the transitions within the coarse-grained states are highly directional along the
limit cycle, we expect σℓ

2 to be more successful than σ1 in capturing the internal EPR by
accounting for the irreversibility associated with the directionality of P (ℓβ|ℓα). Indeed,
by applying the same coarse-graining procedure as in the square lattice (figure 2(B)),
we observe a power-law decay of σℓ

2 with resolution (quantified by nE). The exponent
is ˜ 0.3, which is much smaller than the exponent for σ1 (˜ 0.6). Again, the combined
estimator σ2 = σℓ

2+σt
2 shows similar scaling (appendix B) since it is dominated by σℓ

2.
The power law persists until nB reaches the size of the limit cycle, which is nB ∼ 100

https://doi.org/10.1088/1742-5468/ad8152 9

https://doi.org/10.1088/1742-5468/ad8152


Dissipation at limited resolutions: power law and detection of hidden dissipative scales

J.S
tat.

M
ech.(2024)

103201

Figure 2. Coarse-grained dissipation and characteristic scales in the simplified
Brusselator model. (A) Colormap represents the steady-state probability distri-
bution, with the limit cycle (black circle) extracted from the oscillation of the
deterministic dynamics (inset). (B) Fraction of EPR captured (σ1/σ and σℓ

2/σ)
at varying resolutions, with dashed lines approximately representing their scaling
regime and the black dashed line representing a scaling of exponent 1. (C) σt

2 as a
function of the block size nB for different volumes V, with its maximum indicated
by vertical dashed lines. (D) σt

2 as a function of the coarse-grained timescale τ , with
maxima indicated by vertical dashed lines (τ *). Inset: τ * in terms of the period of
the limit cycle T. Parameters: k 1=5, k−1 = 15. k 2=15, k−2 = 0.5, k 3=2, k−3 = 1;
V =60 for (B).

for the parameters used in figure 2(B). For smaller resolutions, the cycle is not visible
and the captured EPR will enter a different scaling regime.

In this model, we also compute σt
2 for different volumes V, which tunes both the

size and the period of the limit cycle. As shown in figure 2(C), σt
2 is non-monotonic in

nB, with the peak position nB,m (dashed lines) increasing with V. In order to compare
the peak position with the period of the limit cycle, we convert nB to the characteristic
timescale defined as the inverse dynamic activity, τ ≡K−1

obs. τ represents the average
waiting time between transitions at each coarse-grained level and Kobs is the average
measurement frequency. This converts σt

2 to a function of τ (figure 2(D)), whose peak
position τ ⋆ is approximately linear with the oscillation period (inset). In other words,
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when the resolution is tuned to obtain maximally asymmetric waiting time distributions,
the resulting coarse-grained timescale is related to the oscillation period, which is an
internal dissipative timescale.

Notably, a similar non-monotonic relation between the EPR and the coarse-grained
timescale has been recently reported in the actomyosin cortex of starfish oocytes [27].
In these experiments, irreversibility was measured by the Kullback–Leibler divergence
of the displacement of cortical granules after different lag times; rϑ = r(t+ϑ)− r(t)
versus the displacement in the time reverse process. The lag time ϑ is a timescale for
coarse-graining because it quantifies the frequency of measurements. This is analog-
ous to the coarse-grained timescale τ defined here. It is found that the irreversibility
σ is non-monotonic in ϑ, with its peak position ϑ⋆ being a characteristic timescale.
Strikingly, when the oscillation frequency of Rho-GTP patterns was tuned by modulat-
ing the intracellular ATP concentration, the characteristic timescale ϑ⋆ was approxim-
ately linear with the period of Rho-GTP concentration oscillations (figure 3(D) in [27]),
consistent with the linear relation in the Brusselator (figure 2(D), inset). Our results
therefore provide a potential theoretical explanation for the observed scale-dependent
irreversibility and may afford broader applicability to a variety of non-equilibrium living
systems.

4.2. Two-component Schlögl model

The crossover between distinct scaling regimes, indicating dissipative scales, is absent
in the square lattice with random rates and not particularly evident for the Brusselator.
Consequently, we consider the two-component Schlögl model [66, 67]. The system has
two compartments with identical chemical reactions. The particles can either undergo
reactions within compartments or hop between compartments. Thus, the model is ana-
logous to the two-site active Ising model [26]. Let Z =X,Y be the particles in the two
compartments. The reactions within each compartment are:

B
k2⇌
k0

Z, 2Z +A
k3⇌
k1

3Z, (8)

with identical rates in the two compartments. The concentrations [A] and [B] are fixed

by chemostats. The compartments exchange particles with rate γ: X
γ
⇌
γ
Y .

At intermediate γ, the system has four locally stable (macroscopic) states [see
figure 3(A) for the probability distribution in the (Nx,Ny) plane] representing homo-
geneous/inhomogeneous high/low-density states. Each of the four states is dissipative
since the inter-compartment exchange does not commute with reactions within the com-
partments, resulting in local vortices. The four states are also connected by large-scale
dissipative flows that form global vortices. Thus, we expect σℓ

2 to exhibit distinct scaling
exponents for local and global flows. At high resolution, coarse-graining reduces dissip-
ation predominantly by operating on local flows, while at low resolution it does so by
lumping global (large-scale) flows between the four states. Indeed, figure 3(B) shows two
scaling regimes; at large (small) block size (nB), σ

ℓ
2 decreases much faster (slower). The

two regimes cross at n⋆
B ≈ 28, which is approximately the spread of each macroscopic
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Figure 3. Two-compartment Schlögl model. (A) Steady-state probability distribu-
tion, with grids indicating the transition scale n⋆

B. Red and black crosses indicate
local maxima. (B) Fraction of EPR captured σℓ

2/σ shows two scaling regimes (red
and purple dashed lines). They cross at the transition scale n⋆

B. Inset: σ
ℓ
2 normalized

by the number of visible transitions. Parameters: k0 = k3 = 1, k1 = k2 = 4, γ=0.01,
V =60.

state (grids in figure 3(A)). The scaling exponent is larger at low resolutions (larger nB)
because coarse-graining only operates on the transitions between stable states while
ignoring their internal structures. Thus, the crossover between scaling regimes reveals
the characteristic scales of the dissipative dynamics. A similar crossover can be iden-
tified in the experimental data as long as the measurement is at a resolution higher
than n⋆

B.

4.3. Networks with non-regular topologies

Previous arguments and illustrations cover networks with regular structures, but the
main findings are also witnessed in a network of complex topologies, suggesting an even
broader applicability. For direct lumping, previous work has shown that the EPR scaling
only emerges in networks with a self-similar structure, such as a scale-free network [39].
Here, we find the scaling of σℓ

2 in lattice-embedded scale-free networks [78, 79] with an
exponent of approximately 1 (figure 4(A)), which is an improvement from the direct
coarse-graining approach [39].

In contrast to lattice-embedded networks, where the measurement resolution can be
captured by the size of the blocks used in coarse-graining, many real networks have no
apparent embedding, which makes it difficult to define the coarse-graining procedure.
For these systems, we describe the resolution by assuming that only a random subset
of transitions is visible. Although these edges do not necessarily divide the network into
equal-sized coarse-grained states, they provide an apparent measure of the irreversibility
of the coarse-grained dynamics. We study how σℓ

2 and σt
2 scale with the number of visible

transitions.
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Figure 4. (A) Fraction of EPR captured σℓ
2/σ for scale-free networks embedded in

an L×L lattice. Dashed line has slope 1. Embedded networks have degree distri-
bution P (k)∝ k−3, minimum degree kmin = 3 and maximum connection distance
10

√
k. (B) Fraction of EPR captured σℓ

2/σ for Erdős–Rényi networks, averaged over
random selections of visible edges. Dashed line has slope 1. Networks have N =40
vertices and varying parameter p. (C) σt

2 for networks in (B); vertical dashed lines
mark the respective number of cycles divided by 2. (D) Log–log plot of σℓ

2/σ with
a dashed line of slope 1; curves represent the average over 400 realizations of ran-
domly selected edges in networks of distinct types, all with N =60 vertices; further
parameters: m =3 (Barabási–Albert), m =6 and p=0.7 (Watts–Strogatz), p=0.1
(Erdős–Rényi), d =6 (2D random-regular).

First, we consider the Erdős–Rényi model, a canonical model for real-world networks
with random topology. The network is characterized by two values, the number of ver-
tices and the probability p. The network is constructed by starting with the vertices only,
and for each pair of vertices an edge is created with probability p. Despite the topology
being random, the interplay between the two parameters leads to rich phenomena, such
as the emergence of a giant connected component through a phase transition [80]. Here,
we consider Erdős–Rényi networks that after generation turn out to be irreducible, so
that the system reaches a stationary state, and randomized transition rates are assigned
to both directions of each edge. By growing the subset of visible edges through random
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selection, we find an increasing relation between σℓ
2 and the number of visible edges.

When averaged over the order of edge selection, σℓ
2 exhibits robust scaling with the

number of visible edges with an exponent of approximately 1 (figure 4(B)). The same
procedure reveals that σt

2 varies non-monotonically (figure 4(C)), consistent with our
intuition from the Brusselator model (section 4.1). The peaks of σt

2 are associated with
an internal notion of dissipative scale, and it remains unclear how to determine them
through the topological or dynamical properties of the system since there is no unique
way of defining the complexity of a network. As a candidate, we compare the peak of
σt
2 with half the number of cycles in the network (dashed lines of figure 4(C)), which

are the elementary units of dissipative fluxes in non-equilibrium reaction networks [81,
82]. This comparison is also motivated by the fact that a visible edge per cycle causes
σt
2 to vanish and σℓ

2 to capture the full EPR [51]. We observe that the peaks are roughly
related to the number of cycles, which is a factor in defining the internal dissipative
scale but not the sole aspect.

A plethora of models that generate random topologies is relevant in the study of real-
world networks [83], and properties such as degree distribution and number of cycles
can be substantially different among them. To study the effect of network topology,
we perform the same analysis on other remarkable networks: Barabási–Albert, Watts–
Strogatz, random-regular and a 2D grid graph with and without boundary conditions.
We observe that the scaling behavior of the apparent EPR measured by σℓ

2 is robust
with respect to topology (figure 4(D)), presenting a very similar exponent of ∼1. It is
striking that these results are robust to the state-space structure as well as to a specific
coarse-graining procedure, suggesting the general applicability of this approach to a
broad class of systems.

5. Discussion

Our results demonstrate that both the sequence of transitions and the distribution of
intertransition times can help extract the EPR from measurements with limited resol-
ution. All cases studied here, ranging from chemical reaction systems to networks with
complex topologies, σℓ

2 scales with resolution following power laws. The scaling exponent
is smaller than that of the less-informed estimator σ1, often close to unity, representing
a linear scaling with the number of visible transitions. It would be revealing to explore
whether higher-order estimators have even smaller exponents. Although the scaling of
σℓ
2 can be conceptually understood by generalizing the scaling argument [39] for σ1

from state space to transition space, it remains unclear how the scaling exponent for
σℓ
2 can be determined quantitatively. Since the exponent for σ1 depends on the network

structure and flux correlations, we hypothesize that the exponent for σℓ
2 is related to

correlations in transition space, which may be determined through a renormalization
group analysis [40]. It will be interesting to investigate whether the exponent uncov-
ers more properties of the underlying dissipative dynamics and how it depends on the
physical properties of the system.

Regarding the detection of internal scales, the crossover between multiple scaling
regimes of σℓ

2 provides a way to detect characteristic length scales in a dissipative system.
On the other hand, the intertransition-time-based estimator σt

2 varies non-monotonically
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with resolution, with its peak reflecting an internal dissipative scale at which the waiting-
time distributions become maximally asymmetric. Our results show that the σt

2 peak
is related to the period of oscillation in the Brusselator and to the number of cycles in
a complex network. However, further studies are needed to elucidate how the network
topology and transition dynamics affect the crossover in σℓ

2 and the non-monotonicity
of σt

2. In addition, the power laws with distinct exponents separated by a kink in σℓ
2

are reminiscent of the (inverse) energy cascades in turbulent flows [39, 84, 85], where
energy is injected at a given scale and separates the cascade into distinct regimes; this
similarity could lead to additional insight into dissipative scales.

Both σℓ
2 and σt

2 can be readily computed for experimental data. While σℓ
2 can be

estimated directly from a histogram of visible transitions, σt
2 requires evaluating the

Kullback–Leibler divergence from a finite data set of continuous random variables, for
example, with the algorithm in [86, 87]. In addition to estimating the irreversibility
σℓ
2+σt

2, one can also introduce more coarse-graining levels during post-processing to
investigate the dependence of σℓ

2 and σt
2 on resolution. Therefore, this behavior can be

used as a tool to uncover hidden properties. It may be fruitful to combine the approach
with experiments in spatially extended dissipative systems, such as the actomyosin cor-
tex [27] and microtubule active gels [28], to reveal more information on the irreversibility
across length scales.

Remarkably, the predicted non-monotonic relation between irreversibility and resol-
ution has been observed experimentally in the actomyosin cortex [27]. Here, the dissip-
ative timescale is identified by the lag time corresponding to maximum irreversibility,
which is analogous to the coarse-graining scale corresponding to maximum σt

2 pro-
posed in this study (figure 2(D)). This speaks to the applicability of our formalism
to experimental measurements, especially in active matter systems. From a theoretical
perspective, however, there is a slight nuance between transition-based measures and
stroboscopic observations, namely snapshots separated by different lag times, as were
used in [27]. A fruitful future direction is to build a rigorous connection between the
two approaches.

In a given model, the dissipative timescale and length scale might be connected by
simple relations, but universal considerations cannot be drawn at this point and deserve
further investigation. We also highlight that, depending on the system, the resolutions
in time and space are of different relevance. For instance, in the two-compartment
Schlögl model, a lower spatial resolution might completely miss the dissipative dynamics
inside each metastable state, whereas a lower time resolution might still be able to
capture it provided that the typical escape time from metastable states is sufficiently
long. Understanding the interplay between both notions of resolution can guide optimal
strategies for experimental applications.

Our empirical results show that, at very low resolutions, σℓ
2 tends to be much smaller

than the true EPR due to the power-law scaling, highlighting that a route to estimate
the dissipated energy should include either resolution enhancement or methods that rely
on additional information beyond the pairwise statistics of transitions. It will also be
interesting to investigate alternative estimators that also account for a priori knowledge
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on the nature of the hidden structures, such as possible chemical reactions or topolo-
gical state-space structures. These may provide more information on the underlying
dissipative dynamics.
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Appendix A. Survival matrix technique

To compute σℓ
2 and σt

2 for the coarse-grained system, we use the survival matrix method
[50] to analytically derive the joint probabilities P (ℓα,ℓβ) = P (ℓβ|ℓα)P (ℓα) and the
waiting time distributions P (t|ℓα,ℓβ). This amounts to solving a first-passage problem
between given transitions.

We consider a continuous-time Markov chain whose dynamics is described as the rate
matrix R through the master equation dtpt =Rpt. The off-diagonal element [R]ij is the
transition rate from state j to i ( ̸= j ). The diagonal element [R]ii =−

∑
j ̸=i[R]ji is the

escape rate of leaving state i. The goal is to compute the first-passage time distribution
between a subset of transitions that are visible. To this end, we introduce the survival
matrix S, which is defined by removing all visible transitions in the off-diagonal elements
from the rate matrixR while preserving diagonal elements. The survival matrix captures
the internal evolution of the system between observable transitions. To be more precise,
[exp(St)]j,i is the probability of being in the microscopic state j at time t after starting
at microscopic state i at time 0, without taking any visible transitions.

In this study, only the transitions between coarse-grained states are visible. Here, we
compute the first-passage probabilities between the microscopic transitions ℓα,i and ℓβ,j
that connect distinct coarse-grained states. They can be used to derive the probabilit-
ies of coarse-grained transitions through equations (2) and (3). The visible transitions
divide the system into distinct coarse-grained states, which allows us to apply the sur-
vival matrix approach to each coarse-grained state individually. For each coarse-grained
state, the survival matrix reads:

[S]ij = [R]ij − δij
∑
k

[R]kj , (A.1)

where i,j enumerate all microscopic states inside the coarse-grained state, while k runs
over states both inside and outside the coarse-grained state. While the off-diagonal
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terms capture all the internal transitions, the diagonal ones include both internal and
external (i.e. escaping) transitions.

Let s(ℓ) and t(ℓ) be the source and target states of transition ℓ, respectively. The joint
probability of a transition ℓβ,j and intertransition time t conditioned on the previous
transition ℓα,i is given by:

P (ℓβ,j, t | ℓα,i) = [R]t(ℓβ,j),s(ℓβ,j)
[
eSt

]
s(ℓβ,j),t(ℓα,i)

, (A.2)

which can be marginalized to obtain the conditional transition probability:

P (ℓβ,j | ℓα,i) =− [R]t(ℓβ,j),s(ℓβ,j)
[
S−1

]
s(ℓβ,j),t(ℓα,i)

. (A.3)

The ratio gives the probability of the intertransition time between two transitions:

P (t | ℓα,i,ℓβ,j) =
P (ℓβ,j, t | ℓα,i)
P (ℓβ,j | ℓα,i)

. (A.4)

Lastly, it is also necessary to compute the absolute probability of a single transition:

P (ℓ) =
[R]t(ℓ),s(ℓ) ps(ℓ)∑
ℓ ′ [R]t(ℓ ′),s(ℓ ′) ps(ℓ ′)

. (A.5)

In the present study, we consider that transitions between coarse-grained states ℓα
cannot be resolved as ℓα,i. Hence, we combine the probabilities above to obtain the
quantities involved in σℓ

2 and σt
2, as described by equations (2) and (3).

Appendix B. Comparing σ1 and σ2

In the main text, we have analyzed σℓ
2 and σt

2 separately to reveal their properties. Here,
we compare the combined two-step estimator σ2 = σℓ

2+σt
2 with the one-step estimator

σ1. As shown in figure A1, compared to σ1, σ2 preserves a considerably larger fraction
of the EPR since the system is coarse-grained. Moreover, panel A shows that increasing
the size of the square lattice expands the range for power-law scaling, and that deviation
from power law occurs only when nB becomes comparable to the system size.
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Figure A1. Comparing the one-step estimator σ1 and two-step estimator σ2 = σℓ
2+

σt
2 in square lattice (A) and Brusselator (B). Square lattice uses i.i.d. transition

rates as used in figure 1. Brusselator model uses the same parameters as in figure 2
with volume V =6.
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