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In the brain, fine-scale correlations combine to produce macroscopic patterns of activity. However, as ex-
periments record from larger and larger populations, we approach a fundamental bottleneck: the number of
correlations one would like to include in a model grows larger than the available data. In this undersampled
regime, one must focus on a sparse subset of correlations; the optimal choice contains the maximum information
about patterns of activity or, equivalently, minimizes the entropy of the inferred maximum entropy model.
Applying this “minimax entropy” principle is generally intractable, but here we present an exact and scalable
solution for pairwise correlations that combine to form a tree (a network without loops). Applying our method
to over 1000 neurons in the mouse hippocampus, we find that the optimal tree of correlations reduces our
uncertainty about the population activity by 14% (over 50 times more than a random tree). Despite containing
only 0.1% of all pairwise correlations, this minimax entropy model accurately predicts the observed large-scale
synchrony in neural activity and becomes even more accurate as the population grows. The inferred Ising model
is almost entirely ferromagnetic (with positive interactions) and exhibits signatures of thermodynamic criticality.
Together, these results suggest that a large amount of information may be compressed into a small number of
correlations between neurons, and provide the tools for identifying the most important correlations in other
complex living systems.

DOI: 10.1103/PhysRevE.111.054411

I. INTRODUCTION

Understanding how collective behaviors emerge from webs
of fine-scale interactions is a central goal in statistical me-
chanics approaches to networks of neurons [1–7]. At the
same time, exploration of the brain has been revolutionized
by experimental methods that monitor, simultaneously, the
electrical activity of hundreds or even thousands of neurons
[8–14]. One approach to connecting these new data with
statistical physics models is maximum entropy, in which we
construct the maximally disordered model that is consistent
with measured expectation values [15]. In particular, it seems
natural to build models that match the mean activity of indi-
vidual neurons and the correlations between pairs of neurons.
These pairwise maximum entropy models have been strik-
ingly successful in describing collective behavior, not only in
networks of real neurons, but also in the evolution of protein
families, the dynamics of genetic networks, flocks of birds,
and social networks [16–27].

But as experiments progress to record from larger and
larger numbers of neurons, we face a combinatorial explosion.

*Contact author: christopher.lynn@yale.edu

Even if we focus on pairwise correlations, the number of
correlations approaches the number of independent samples
in modern experiments [8–14]. In this undersampled regime,
one is forced to select only a sparse subset of the correlations
to include in any model. While constructing an accurate model
with only a small number of correlations may seem hopeless,
one can draw inspiration from statistical physics, where effec-
tive descriptions of macroscopic phenomena can often ignore
many of the microscopic details.

Here, given restrictions on the number and structure of
correlations we can include in a model, we seek to identify
those that contain the maximum information about system
activity. We demonstrate that the optimal correlations are
those that induce the maximum entropy model with mini-
mum entropy [28]. Solving this minimax entropy problem is
generally infeasible. But for pairwise correlations that form a
tree (a network without loops), the entropy reduction decom-
poses into a sum over connected pairs; the advantages of tree
structure in models of neural activity have been appreciated in
other contexts [29]. This decomposition reduces the minimax
entropy problem to a minimum spanning tree problem, which
can be solved exactly and efficiently [17,30]. The result is a
framework for uncovering the maximally informative tree of
correlations in very large systems [31].
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We apply our method to investigate the collective activity
of N ∼ 1500 neurons in the mouse hippocampus [32]. While
most pairs of neurons are only weakly correlated, some rare
pairs have mutual information orders of magnitude larger than
average. By focusing on these exceptionally strong correla-
tions, our minimax entropy model captures 50 times more
information than a random tree and, despite containing only
0.1% of all pairwise correlations, produces realistic large-
scale synchrony in activity. Moreover, the model becomes
even more accurate as the population grows, providing hope
for statistical physics descriptions of even larger systems.

The paper is organized as follows. In Sec. II we define the
minimax entropy problem and present a solution for trees of
pairwise correlations. In Sec. III we review a relatively recent
experiment on large-scale recordings of neuronal activity in
the mouse hippocampus. Inferring the optimal tree of corre-
lations, in Sec. IV we demonstrate that the minimax entropy
model predicts realistic patterns of synchronized activity. In
Sec. V we investigate the structural properties of the optimal
tree and the functional properties of the induced Ising model.
In Sec. VI we show that the minimax entropy model becomes
more accurate for larger populations, and then in Sec. VII
we investigate the thermodynamic properties of the minimax
entropy model, finding that the real system is poised at a
special point in its phase diagram. Finally, in Sec. VIII we
provide conclusions and outlook.

II. MINIMAX ENTROPY TREES

A. Maximum entropy models

Consider a system of N elements i = 1, . . . , N with states
x = {xi}, where xi is the state of element i. From experiments,
we have access to M samples of the system activity x(m),
where m = 1, . . . , M. Our knowledge about the system is de-
fined by observables, which can be represented as expectation
values,

〈 f (x)〉exp = 1

M

M∑
m=1

f (x(m) ), (1)

where f (x) is an arbitrary function of the state x. For ex-
ample, one could measure the average states of individual
elements 〈xi〉exp or the correlations among multiple elements
〈xix j〉exp, 〈xix jxk〉exp, and so on. Given a set of K observables
O = { fν (x)}, where ν = 1, . . . , K , the most unbiased predic-
tion for the distribution over states is the maximum entropy
model [15,33]

PO(x) = 1

Z
exp

[
−

K∑
ν=1

λν fν (x)

]
, (2)

where Z is the normalizing partition function, and the pa-
rameters λν ensure that the model matches the experimental
observations, such that

〈 fν (x)〉 = 〈 fν (x)〉exp. (3)

To have control over errors in the K expectation values,
we must have K � MN . But as experiments record from
larger systems, one is confronted with an explosion of pos-
sible observables. The total number of correlations grows

exponentially with N , and even the K ∝ N2 pairwise corre-
lations violate the good sampling condition as N grows large.
Thus, to avoid sampling problems, one must focus on a sparse
subset of correlations. Here we arrive at the central question:
Among a large set of observables, which should we choose to
include in a model?

B. Minimax entropy principle

Suppose we want to find the set of observables O that
yields the most accurate description of the system. We can
choose O to maximize the log-likelihood of the model PO or,
equivalently, minimize the KL divergence with respect to the
data DKL(Pexp||PO ). Due to the form of PO in Eq. (2), the KL
divergence simplifies to a difference in entropies

DKL(Pexp||PO ) =
〈
log

Pexp(x)

PO(x)

〉
exp

= log Z + 1

ln 2

∑
ν

λν〈 fν (x)〉exp − Sexp

= SO − Sexp, (4)

where the final equality follows from Eq. (3). We therefore
find that the optimal observables O are the ones that minimize
the entropy of the maximum entropy model SO. This is the
“minimax entropy” principle, which was proposed 25 years
ago but has received relatively little attention [28].

In addition to providing the best description of the data,
the optimal observables O can also be viewed as containing
the maximum information about the system. If we begin by
observing each element individually, then we only have access
to the marginal distributions Pi(xi ); in this case, the maxi-
mum entropy model is the independent distribution Pind(x) =∏

i Pi(xi ) with entropy Sind. If, in addition to the marginals,
we also observe some of the correlations between elements
[34], this knowledge reduces our uncertainty about the system
by an amount IO = Sind − SO � 0. Thus, by minimizing SO,
the optimal observables O also maximize the information IO
contained in the observed correlations.

In practice, applying the minimax entropy principle poses
two distinct challenges. First, for each set of observables
O = { fν}, one must solve the traditional maximum entropy
problem, that is, one must compute the parameters λν such
that the model PO matches the expectations 〈 fν (x)〉exp in the
data. Second, one must repeat this calculation for all sets of
observables O to find the one that minimizes the entropy SO.
This search process is generally intractable. In what follows,
we study a class of observables that admits an exact and
efficient solution, enabling statistical physics models of very
large systems.

C. Trees of pairwise correlations

For simplicity, we focus on binary variables xi = 0, 1, for
which the marginals Pi(xi ) are defined by the averages 〈xi〉.
In the search for sources of order in a system, one might
begin with the simplest correlations: those between pairs
of elements 〈xix j〉. In populations of N ∼ 100 neurons, one
often has sufficient data to fit all the pairwise correlations,
which can be very effective in capturing key features of the
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collective activity [16,18,19]. But this corresponds to K ∝ N2

constraints, and at large N we will violate the good sampling
condition K � NM. To avoid undersampling, we are forced
to select a sparse subset of pairwise correlations, which can
be visualized as a network G with edges defining the observed
correlations between variables. Each network induces a max-
imum entropy model,

PG (x) = 1

Z
exp

[ ∑
(i j)∈G

Ji jxix j +
∑

i

hixi

]
, (5)

where the parameters hi and Ji j enforce the constraints on 〈xi〉
and 〈xix j〉 in G, respectively. The minimax entropy principle
tells us that we should find the network G (within some al-
lowed set) that produces the maximum entropy model PG with
minimum entropy SG .

In statistical physics, calculations are difficult in part due to
feedback loops. By eliminating loops, many statistical physics
models become tractable, as in one-dimensional systems or on
Bethe lattices [35]. In the Ising model—which is equivalent
to Eq. (5)—if the interactions Ji j lie on a tree T (or a network
without loops), then one can efficiently compute the partition
function Z and all statistics of interest (see Appendix A).
Inverting this procedure, one can begin with the averages 〈xi〉
and the correlations 〈xix j〉 on a tree T and analytically derive
the maximum entropy parameters [17,30]:

Ji j = ln

[ 〈xix j〉(1 − 〈xi〉 − 〈x j〉 + 〈xix j〉)

(〈xi〉 − 〈xix j〉)(〈x j〉 − 〈xix j〉)

]
, (6)

hi = ln
〈xi〉

1 − 〈xi〉 +
∑
j∈Ni

ln

[
(1 − 〈xi〉)(〈xi〉 − 〈xix j〉)

〈xi〉(1 − 〈xi〉 − 〈x j〉 + 〈xix j〉)

]
,

(7)

where Ni represents the neighbors of i in T (see Appendix B).
Since each tree contains N − 1 correlations, the total number
of observables is K = 2N − 1, and so we are well sampled if
the number of independent samples obeys M � 2.

Equations (6) and (7) solve the maximum entropy problem
for the distribution PT , but we still need to search over all
of the NN−2 trees to find the one that minimizes the entropy
ST . This search simplifies significantly by noticing that the
information IT decomposes into a sum over the connections
(i j) in T ,

IT = Sind − ST =
∑

(i j)∈T
Ii j, (8)

where Ii j is the mutual information between i and j (see
Appendix C) [17,30]. Note that for pairs (i j) ∈ T , the mutual
information Ii j is the same in the model and the data, so we
can compute the entropy ST directly from the data without
constructing the model itself.

Equation (8) tells us that the tree with the minimum entropy
ST is the one with the largest total mutual information IT .
Identifying this optimal tree is a minimum spanning tree prob-
lem [17], which can be solved efficiently using a number of
different algorithms [36]. To begin, one computes the mutual
information Ii j between all elements [Fig. 1(a)]. One can then
grow the optimal tree by greedily connecting the element
i in the tree to the new element j with the largest mutual

FIG. 1. Constructing the optimal tree. (a) Visualization of the
mutual information Ii j (edges) between elements in a system (nodes),
with darker, thicker edges reflecting larger Ii j . (b) Illustration of
Prim’s algorithm. At each step, we consider the mutual information
Ii j between elements in the tree and those not yet connected (matrix).
We then connect the two elements with the largest Ii j (dashed edge)
and repeat until all elements have been added. (c) Optimal tree that
maximizes minimizes ST and maximizes IT .

information Ii j [Fig. 1(b)]; this is Prim’s algorithm, which
runs in O(N2) time [Fig. 1(c)]. Thus, by restricting to trees
of pairwise correlations, we can solve the minimax entropy
problem exactly, even at very large N .

To see the strength of this approach, consider data gener-
ated by an Ising model on a tree. Recalling Eq. (4), we have
ST � Sexp, where Sexp is the entropy of the data. Since the
data is generated by a tree, our minimax entropy approach
is guaranteed to find the tree T that saturates the bound
ST = Sexp. Returning to Eq. (4), we see that DKL(Pexp||PT ) =
ST − Sexp = 0, which tells us that we have identified the true
underlying tree of interactions and our model is exact.

III. LARGE-SCALE NEURONAL ACTIVITY

We ultimately seek to explain the collective behaviors
of very large networks. However, each tree only contains a
vanishingly small fraction 2/N of all pairwise correlations;
and even if we have access to all of the pairwise statistics,
there’s still no guarantee of success. Can such a sparse set of
observations capture something important about the system as
a whole?

To answer this question, we consider patterns of electrical
activity in N = 1485 neurons in the hippocampus of a mouse,
recorded in a recent experiment [32]. Mice are genetically
engineered so that their neurons express a protein whose fluo-
rescence is modulated by calcium concentration, which in turn
follows the electrical activity of the cells. This fluorescence
is recorded using a scanning two-photon microscope as the
mouse runs in a virtual environment. The signal from each
cell consists of a quiet background punctuated by short bursts
of activity [18], providing a natural binarization into active
(xi = 1) or silent (xi = 0) within each video frame [Fig. 2(a)].
Capturing images at 30 Hz for 39 min yields M ∼ 7 × 104

samples of the collective state x = {xi}, but these are not all
independent. Nonetheless, we can still estimate the mutual
information Ii j with small errors after correcting for finite-data
effects (see Appendix D).

Among all ∼106 pairs of neurons, only 9% exhibit sig-
nificant mutual information with values shown in Fig. 2(b);
see Appendix D. We see that a small number of pairs con-
tain orders of magnitude more information than average
(Ī = 2.9 × 10−4 bits). This heavy-tailed distribution provides
hope for a tree of correlations that contains much more
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µ

FIG. 2. Collective activity in a large population of neurons.
(a) Time series of neuronal activity in the mouse hippocampus,
where each dot represents an active neuron (see [32] for experimental
details). States x = {xi} represent the population activity within a
single window of width �t = 1/30 s. (b) Ranked order of significant
mutual information Ii j in the population. Solid line and shaded region
reflect estimates and errors (two standard deviations) after correcting
for finite data (see Appendix D). (c) Distribution of correlation coef-
ficients over neuron pairs, with percentages indicating the fraction of
positively and negatively correlated pairs. (d) Mutual information Ii j

vs correlation coefficient, where each point represents a distinct neu-
ron pair. Estimates and errors are the same in (b). (e) Distribution of
physical distances between neurons. (f) Average mutual information
Ii j as a function of physical distance, computed in bins that contain
500 pairs each; note that individual pairs vary widely around this
average.

information than typical IT � (N − 1)Ī . Additionally, while
most pairs of cells are negatively correlated [Fig. 2(c)], the
strongest mutual information corresponds to positive corre-
lations [Fig. 2(d)]. And while most neurons are far from one
another [Fig. 2(e)], larger values of Ii j are concentrated among
pairs of cells that are close to one another, as can be seen
by plotting the mean mutual information as a function of
distance [Fig. 2(f)]. Together, these observations suggest that
a backbone of positively correlated and physically proximate
neurons may provide a large amount of information about the
collective neural activity.

IV. PREDICTIONS OF MINIMAX ENTROPY MODEL

Constructing the minimax entropy tree (Fig. 1), we find
that it captures IT = 26.2 bits of information. This reduces
our uncertainty about the population activity by IT /Sind =
14.4%, which is equivalent to freezing the states of 214 ran-
domly selected neurons. For comparison, we consider two
additional networks: (i) a random tree, which represents a

FIG. 3. Predicting pairwise statistics. (a) Ranked order of signif-
icant mutual information in the population (black), two-standard-
deviation errors (shaded region), and prediction of the minimax
entropy model (red). (b) Correlation coefficients predicted in the
model vs those in the data, with dashed lines indicating equality. All
pairs are divided evenly into bins along the x axis, with solid lines
and shaded regions reflecting means and errors (standard deviations)
within bins.

typical collection of correlations, and (ii) the tree of minimum
physical distances, which reflects the fact that neighboring
neurons are more likely to be strongly correlated [Fig. 2(f)].
The optimal tree captures over twice as much information
as the minimum distance tree and over 50 times more than
random.

While each model PT is defined to match a sparse subset of
the observed correlations 〈xix j〉 (and thus mutual information
Ii j) for (i j) ∈ T , we can ask what PT predicts for all pairs
of neurons (see Appendix E). We note that the optimal tree
does not simply match the largest N − 1 values of Ii j ; in
general, these will form loops. Yet we find that the minimax
entropy model still predicts the distribution of Ii j within ex-
perimental error for the top ∼N values [Fig. 3(a)]. Indeed,
we find that the model captures the strong correlations in the
population [Fig. 3(b)]; this accuracy decreases significantly
for the minimum distance and random trees (see Appendix F).
As expected, the optimal tree underpredicts the strengths of
weak and negative correlations [Fig. 3(b)]. Although these
correlations may seem unimportant individually, we note that
they comprise the vast majority of neuron pairs [Fig. 2(c)].

With knowledge of only 2/N ∼ 0.1% of the pairwise cor-
relations, can the optimal tree capture collective behavior
in the system? In neuronal populations (and other complex
systems), one key collective property is synchronized activ-
ity [16,19,20,27], which is characterized by the probability
P(K ) that K out of the N neurons are simultaneous active.
If the neurons were independent, this distribution would be
approximately Gaussian at large N (Fig. 4, dashed). But in real
populations, the dependencies among neurons leads to a much
broader distribution (Fig. 4, black), with moments of extreme
synchrony in both activity (large K) and silence (small K).
If one builds a model from pairwise correlations chosen at
random, then the distribution P(K ) is almost indistinguish-
able from that of an independent system (see Appendix F).
By contrast, the optimal tree captures most of this collective
behavior [31], correctly predicting �100-fold increases in
the probabilities that K � 50 neurons are active in the same
small time bin (Fig. 4, red). Although the detailed patterns of
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FIG. 4. Predicting synchronized activity. Distribution P(K ) of
the number of simultaneously active neurons K in the data (black),
predicted by the minimax entropy tree (red), and the Gaussian dis-
tribution for independent neurons with mean and variance 〈K〉exp

(dashed). We confirm that the Gaussian matches the data after shuf-
fling the activity of each neuron in time. To estimate P(K ) and error
bars (two standard deviations), we first split the data into 1-min
blocks to preserve dependencies between consecutive samples. We
then select one-third of these blocks at random and repeat 100 times.
For each subsample, we compute the optimal tree T and predict P(K )
using a Monte Carlo simulation of the model PT .

activity in the system are shaped by competing interactions
that are missing from our optimal tree, this shows that large-
scale synchrony can emerge from a sparse network of the
strongest correlations.

V. STRUCTURE OF MINIMAX ENTROPY MODEL

A. Ising structure

To understand the nature of the optimal tree, we can study
the minimax entropy model PT itself, which, as discussed
above, is equivalent to an Ising model from statistical physics.
This mapping is made concrete by considering a system of
spins σi = 2xi − 1 ∈ ±1 with Ising interactions J I

i j = Ji j/4
and local fields hI

i = hi/2 + ∑
j J I

i j , where Ji j and hi are de-
fined in Eqs. (6) and (7). If the interaction J I

i j is positive
(negative), then activity in neuron i leads to activity (silence)
in neuron j, and vice versa. For random trees, the interac-
tions J I

i j are nearly evenly split between positive and negative
[Fig. 5(a)]; this is consistent with previous investigations of
fully connected models in populations of N ∼ 100 neurons
[16,19,20]. Meanwhile, we recall that the largest mutual in-
formation in the population belongs to positively correlated
neurons [Fig. 2(d)]. Accordingly, the optimal tree has in-
teractions that are almost exclusively positive [Fig. 5(a)].
We have arrived, perhaps surprisingly, at a traditional Ising
ferromagnet.

While the interactions J I
i j define effective influences be-

tween neurons, the local fields represent individual biases
toward activity (hI

i > 0) or silence (hI
i < 0). For random trees,

FIG. 5. Maximum entropy models of large-scale activity. (a, b)
Distributions of Ising interactions J I

i j (a) and local fields hI
i (b) in the

optimal tree (red), the minimum distance tree (blue), and a random
tree (cyan). (c) Average activities 〈σi〉 vs local fields hI

i , where each
point represents an individual neuron. Dashed line illustrates the
independent prediction 〈σi〉 = tanh hI

i . (d) Average interaction fields
hint

i = ∑
j J I

i j〈σ j〉 vs local fields hI
i . Percentages indicate the propor-

tion of neurons for which hint
i < hI

i (dashed line indicates equality).

all of the local fields are negative [Fig. 5(b)], reflecting the fact
that neurons are more likely to be silent than active. But in the
optimal tree, we see that some neurons are counterintuitively
biased toward activity with hI

i > 0 [Fig. 5(b)]. These positive
biases stand in competition with the positive interactions in
the model, which, because neurons favor silence, tend to in-
duce silence in the population.

To understand the effects of interactions on individual
cells, we note that the average activity of an independent
neuron i is fully defined by hI

i through the relation 〈σi〉 =
tanh hI

i . Since random trees contain only weak correlations,
the neuronal activity closely tracks this independent predic-
tion [Fig. 5(c)]. As interactions become increasingly positive
in the minimum distance and optimal trees, the alignment
of neighboring neurons produces average activities that are
significantly lower than one would expect from local fields
alone [Fig. 5(c)]. For each neuron i, the competition between
internal biases and interactions is made clear by comparing
the local field hI

i to the average influence due to interactions
hint

i = ∑
j J I

i j〈σ j〉. In random trees, only 1% of neurons are
dominated by interactions, such that hint

i < hI
i [Fig. 5(d)]; this

proportion increases to 43% in the minimum distance tree and
57% in the optimal tree [Fig. 5(d)]. So despite the fact that
the tree structure constrains each cell to only interact with two
others in the entire population (on average), most neurons in
the optimal tree are driven more strongly by interactions than
internal biases.
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FIG. 6. Network structure of optimal tree. (a) Illustrations of the minimax entropy tree (left), the minimum distance tree (middle), and
a random tree (right). In all networks, the central neuron has the largest degree (number of connections), and those with one connection are
located on the perimeter with distance from the central neuron decreasing in the clockwise direction. (b) Distributions of degrees in the optimal
and minimum distance trees. Dashed line indicates the Poisson distribution of random trees. (c) Distributions of physical distances among the
connections in each tree. (d) Distributions of topological distances (or the lengths of shortest paths) across all pairs of neurons in each tree.

B. Network structure

In addition to the functional properties of the model PT ,
we can also study the graph structure of the optimal tree
T . To visualize each tree, we place the cell with the most
connections (or largest degree ki = |Ni|) at the center and
all of the cells with single connections (ki = 1) around the
perimeter [Fig. 6(a)]. For random trees, the distribution of
degrees is Poisson [Fig. 6(b)], preventing the emergence of
high-degree hub nodes. Degrees are even more sharply peaked
in the minimum distance tree, such that we do not observe a
single neuron with more than four connections [Fig. 6(b)]. By
contrast, the optimal tree has a much broader degree distri-
bution, with a central neuron that connects to 29 other cells
in the population [Fig. 6(b)]. Such hub nodes are frequently
observed in the brain’s physical connectivity [37–39] and are
thought to play an important role in facilitating communica-
tion [40].

By maximizing information about the population, one
might hope that the optimal tree captures features of the
true interactions between neurons. In the brain, demands
on communication are constrained by energetic costs [41].
Networks have evolved to balance efficient communication
(minimizing the number of steps between cells in the net-
work, known as topological distance) with energetic efficiency
(minimizing the physical lengths of connections) [38,42].
These pressures are in direct competition: Networks with

physically local connections form latticelike structures with
long topological distances, and networks with short topologi-
cal distances (known as the small-world property [43]) require
physically long-range connections. Indeed, in the minimum
distance tree, which is composed of the physically shortest
connections [Fig. 6(c)], communication between two neurons
requires ∼100 intermediate cells on average [Fig. 6(d)]; and
random trees, which are known to produce short topologi-
cal distances [Fig. 6(d)], are mostly composed of long-range
connections [Fig. 6(c)]. Meanwhile, the minimax entropy
model identifies connections that are much shorter than aver-
age [Fig. 6(c)] while simultaneously maintaining small-world
structure [Fig. 6(d)], just as observed in real neuronal net-
works [42].

VI. SCALING WITH POPULATION SIZE

Thus far, we have focused on a single population of
N ∼ 1500 neurons. But as experiments advance to record
from even larger populations, how does the minimax entropy
model scale with N? To answer this question, in the spirit of
Ref. [19], one can imagine growing a contiguous population
centered at a single neuron [Fig. 7(a)] and computing the opti-
mal tree for increasing population sizes. Due to the efficiency
of our model, we can repeat this process starting from each
of the different neurons and average over the results. As the
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FIG. 7. Scaling of the minimax entropy model. (a) Illustration
of our growth process superimposed on a fluorescence image of the
N = 1485 neurons in the mouse hippocampus. Starting with a single
neuron i, we grow the population of N neurons closest to i (red to
yellow). We then repeat this process for each neuron and average the
results. (b) Information IT captured by different trees as a function
of population size N . Dashed line indicates the independent entropy
Sind. (c) Fraction of the independent entropy IT /Sind explained by
different trees as a function of N . (d) Average Ising local fields hI

i

(solid) and interaction fields hint
i (dashed) for the maximum entropy

models on different trees PT .

population grows, the independent entropy Sind must increase
extensively (that is, linearly with N) on average [Fig. 7(b)].
Since each tree contains N − 1 correlations, one might also
expect the information IT of any tree to scale extensively.
However, we find that the scaling of IT with population size
depends critically on which correlations we use in building
the tree [Fig. 7(b)].

If the information IT grows extensively, then the model
PT explains a constant proportion of the independent entropy
IT /Sind across different population sizes. Indeed, because the
properties of the closest neurons do not change as the popula-
tion grows (on average), the minimum distance tree captures
a nearly constant ∼6% of the independent entropy [Fig. 7(c)].
By contrast, since the mutual information Ii j between neurons
tends to decrease with physical distance [Fig. 2(f)], the aver-
age mutual information Ī in a spatially contiguous population
decreases with N . Thus, the typical information in a random
tree grows subextensively with the population size [Fig. 7(b)],
and the fractional information IT /Sind vanishes [Fig. 7(c)].

But even though the average mutual information Ī de-
creases, as the population grows we uncover more of the
exceptionally large mutual information Ii j in the tail of the dis-
tribution [Fig. 2(b)]. By identifying these highly informative
correlations, the optimal tree accumulates a superextensive
amount of information IT [Fig. 7(b)], thus capturing a
greater proportion of the independent entropy as N increases

[Fig. 7(c)]. This increased explanatory power is underpinned
by stronger interactions and weaker local fields in the Ising
network [Fig. 7(d)]. There is no sign that the trend in Fig. 7(c)
is saturating at N ∼ 103, suggesting that our minimax entropy
framework may become even more effective for larger popu-
lations.

VII. THERMODYNAMICS AND SIGNATURES
OF CRITICALITY

As discussed above, each tree of observed correlations T
generates a maximum entropy model PT [Eq. (5)], which in
turn is equivalent to a system of Ising spins. This mapping
from experimental observations to statistical physics gives
us the opportunity to ask whether the model PT occupies a
special place in the space of possible models. In statistical me-
chanics, equilibrium systems are described by the Boltzmann
distribution,

P(x) = 1

Z
exp

[
− 1

T
E (x)

]
, (9)

where T is the temperature of the system and E (x) is the
Hamiltonian, which defines the energy of state x. For a given
tree T , we notice that PT defines a Boltzmann distribution
with temperature T = 1 and energy

E (x) = −
∑

(i j)∈T
Ji jxix j −

∑
i

hixi, (10)

where Ji j and hi are defined in Eqs. (6) and (7). Note that we
do not assume the experimental system itself is in equilibrium;
this correspondence is purely mathematical.

By perturbing the temperature away from T = 1, we can
probe at least one slice through the space of possible net-
works [20]. For each value of T , we arrive at a hypothetical
system PT (x; T ) with average activities 〈xi〉T and correlations
〈xix j〉T that are no longer constrained to match experimental
observations. Consider the minimax entropy tree, which (as
discussed in Sec. V) produces a ferromagnetic Ising model
with nearly all positive interactions J I

i j [Fig. 5(a)]. At high
temperatures T � 1, fluctuations destroy the preference for
silence over activity, and the system approaches the average
activity 1

N

∑
i〈xi〉T = 0.5 [Fig. 8(a)]. Meanwhile, at low tem-

peratures T � 1, activity vanishes as the network freezes into
the all-silent ground state x = 0 [Fig. 8(a)]. In both limits, all
of the information contained in correlations is lost.

As the temperature decreases, most systems experience
a gradual transition from disorder to order. But for certain
combinations of parameters Ji j and hi, a small change in the
temperature T can lead to a large change in the behavior of the
system, and as N becomes large, this transition becomes sharp
[20,35,44]. Such phase transitions mark a critical point in the
space of possible systems, with the Ising ferromagnet as the
canonical example [45]. In the optimal tree, as the temperature
increases just above T = 1, the positive interactions lead to a
much steeper increase in activity than an independent system,
and this transition grows even sharper for larger populations
[Fig. 8(a)].

We emphasize that at any finite N there is no true critical
point, but N ∼ 1000 may be large enough that the idealization
N → ∞ is useful. Since we are studying models defined on
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FIG. 8. Thermodynamics of the minimax entropy model. (a) Average activity 1
N

∑
i〈xi〉T as a function of temperature T in the optimal tree

T for populations of increasing size N and for independent neurons (dashed). (b) Normalized susceptibility χ/N vs temperature T for the
same models as (a). Inset shows the increase in χ/N with population size N for the true minimax entropy models (T = 1). (c) Normalized
susceptibility vs T for the minimum distance tree (blue) and random trees (cyan) across different population sizes. (d) Maximum value of
the normalized susceptibility χ/N (top) and peak temperature T (bottom) as functions of the population size N for the optimal tree (red), the
minimum distance tree (blue), random trees (cyan), and independent neurons (dashed). (e), (f) Specific heat C/N (e) and information fraction
IT /Sind (f) vs temperature T for the minimax entropy models in (a) and (b). Inset in (e) shows the increase in C/N with population size N for
the true minimax entropy models (T = 1). In all panels, darker lines reflect populations of increasing size N , constructed using the method in
Fig. 7(a) and averaged over 100 random initializations. In (a)–(e), dashed lines represent independent neurons.

trees, there are also subtleties about how one would construct
the thermodynamic limit, since such a large fraction of sites
are on the boundary [46]. For our purposes, the interesting
question is whether real networks of neurons are in any sense
at special points in the space of possible networks. One way in
which this could happen is if parameters are set so that simple
macroscopic quantities have near-extremal values.

One example of a macroscopic quantity that provides a
global measure of collective behavior is the total susceptibility
of the mean activity to changes in the bias fields,

χ =
∑

i j

d〈xi〉T

dh j
= 1

T

∑
i j

(〈xix j〉T − 〈xi〉T 〈x j〉T ), (11)

where the rewriting in terms of connected correlations can
be derived from the Boltzmann distribution [Eq. (9)]. We
recall that at conventional critical points we would see a
divergence of χ/N as N → ∞. At both high and low tem-
peratures, correlations are destroyed and the susceptibility
vanishes [Fig. 8(b)]. However, at intermediate temperatures,

the susceptibility exhibits a peak that becomes sharper as the
system grows, even after normalizing by the population size
N [Fig. 8(b)]. Moreover, as N increases, the peak temperature
decreases toward T = 1, corresponding to the true minimax
entropy model PT . By contrast, the minimum distance and
random trees undergo smooth transitions from disorder to
order [Fig. 8(c)], with the maximum susceptibility and peak
temperatures remaining approximately constant across all
population sizes N [Fig. 8(d)].

In addition to the susceptibility χ , we also observe a dra-
matic peak in the specific heat C/N [Fig. 8(e)], where

C = d〈E (x)〉T

dT
(12)

is the heat capacity (see Appendix G). Although there is no
meaning to “heat” in this system, because the specific heat is
related to the variance in energy, we can think of the peak in
C as being a peak in the dynamic range of (log) probabilities
across the states of the network. These divergences in the
susceptibility and heat capacity also align with a sharp peak
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in the information fraction IT /Sind [Fig. 8(f)], with larger
systems becoming even more strongly correlated. Together,
these results indicate that the true minimax entropy model PT
is poised near a special point in the space of models PT (x; T ),
where small changes in parameter values can produce large
changes in the collective behavior of the system.

VIII. CONCLUSIONS

The maximum entropy principle provides the most unbi-
ased mapping from experimental observations to statistical
physics models. Over the past two decades, this link has
proven useful in understanding the emergence of collective
behaviors in populations of neurons and other complex living
systems [16–27]. Less widely emphasized is the fact that there
is not a single maximum entropy model but rather a landscape
of possible models depending on what features of the system
we choose to constrain. Quite generally, we should choose the
features that are most informative—the ones that minimize
the entropy of the maximum entropy model—leading to the
minimax entropy principle [28]. As experiments record from
larger and larger populations of neurons [8–14], we enter an
undersampled regime in which selecting a limited number
of maximally informative features is not only conceptually
appealing, but also practically necessary.

While the minimax entropy problem is generally in-
tractable, here we make progress in two steps. First, we build
upon previous work by constraining mean activities and pair-
wise correlations, resulting in models that are equivalent to
systems of Ising spins. Second, taking inspiration from the
Bethe lattice, we focus only on trees of correlations, or sparse
networks without loops. Under these restrictions, we solve the
minimax entropy problem exactly, identifying the optimal tree
in quadratic time [17,30]. The result is a nontrivial family
of statistical physics models that can be constructed very
efficiently for large neuronal populations.

It is far from obvious that these models can capture any of
the essential collective behavior in real networks. To answer
this question, we study a population of N ∼ 1500 neurons in
the mouse hippocampus [32], identifying the maximally infor-
mative tree of pairwise correlations (Figs. 5 and 6). Despite
constraining only one correlation per neuron, this minimax
entropy model accounts for 14% of the independent entropy
(over 50 times more than random trees) and predicts the distri-
bution of large-scale synchrony in activity (Fig. 4). Moreover,
the model becomes more effective as the population grows
(Fig. 7) and exhibits hints of critical behavior (Fig. 8). The
success of such a sparse model hinges on the fact that the
distribution of mutual information between neurons is heavy-
tailed [Fig. 2(b)] such that a few rare correlations carry much
more information than average. In fact, the physical connec-
tions between neurons are now understood to be heavy-tailed
across a range of animals [47]. Together, these results suggest
that our minimax entropy framework may provide at least a
starting point for simplified descriptions of the large systems
becoming accessible in modern experiments.

While our approach has proven surprisingly effective, it
admits a number of key limitations that pave the way for future
research. The central feature of our models— their sparsity—
is also the main constraint on their accuracy. Indeed, while

our minimax entropy framework captures the sparse network
of strong correlations in the population, it underpredicts the
strengths of weak correlations (Fig. 3), which (once added
together) can have a large impact on the detailed behavior of
a system [16]. Although we cannot constrain all ∼N2 correla-
tions in large populations (to avoid undersampling), one might
hope to construct a model that includes more than the N − 1
in a tree. We hope that in future work it will be possible to
build models that extend this (literal) backbone in ways that
remain tractable.
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APPENDIX A: ISING CALCULATIONS ON A TREE

To establish notation, we begin by reviewing well-known
ideas about statistical mechanics for models without loops.
We then proceed, here and in subsequent Appendixes, to
technical points needed for the main text.

1. Partition function

Consider a system of N binary variables xi ∈ {0, 1}, i =
1, 2, . . . , N , defined by fields hi and interactions Ji j that lie on
a tree T . The Boltzmann distribution [Eq. (5)] takes the form

PT (x) = 1

Z
exp

[ ∑
(i j)∈T

Ji jxix j +
∑

i

hixi − F

]
, (A1)

where F = 0 is the zero-point energy, which will become
useful. To begin, we seek to compute the partition function,

Z =
∑

x

exp

[ ∑
(i j)∈T

Ji jxix j +
∑

i

hixi − F

]
. (A2)

To do so, imagine summing over one variable and finding a
new system of N − 1 variables with the same partition func-
tion Z . If we can repeat this process until no variables remain,
then computing Z will be trivial.

We label the nodes i based on the order that they are
removed, and we let h(i)

i and F (i) denote the updated param-
eters at step i while the interactions Ji j stay fixed. Consider
summing over a variable i with only one connection in the
network, say to variable j. We note that such a node is always
guaranteed to exist in a tree. To keep the partition function
fixed, the new system with i removed must satisfy the equa-
tions

eh(i)
j x j−F (i)

(eJi j x j+h(i)
i + 1) = eh(i+1)

j x j−F (i+1)
. (A3)
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This is a system of two equations (one for each value of x j),
which we can solve for the new parameters:

h(i+1)
j = h(i)

j + ln

[
eJi j+h(i)

i + 1

eh(i)
i + 1

]
, (A4)

F (i+1) = F (i) − ln[eh(i)
i + 1]. (A5)

After removing i, the new system still forms a tree, so we
can repeat the above procedure. When all nodes have been
removed, we are left with a single parameter F = F (N+1),
which is the free energy of the system, and the partition
function is given by

Z = e−F . (A6)

2. Average activities and correlations

To compute population statistics, one simply needs to take
derivatives of the partition function,

〈xi〉 = d ln Z

dhi
= −dF

dhi
, (A7)

〈xix j〉 = d ln Z

dJi j
= − dF

dJi j
, (A8)

where d
dhi

and d
dJi j

represent total derivatives, which account
for indirect dependencies via Eqs. (A4) and (A5). Since

dF
dF (i+1) = 1 and dh(i)

i
dhi

= 1, the above procedure yields

〈xi〉 = −∂F (i+1)

∂h(i)
i

− dF
dh(i+1)

j

∂h(i+1)
j

∂h(i)
i

. (A9)

Noticing that

− dF
dh(i+1)

j

= − dF
dh j

= 〈x j〉, (A10)

and taking derivatives of Eqs. (A4) and (A5), we have

〈xi〉 = 1

1 + e−h(i)
i

+ 〈x j〉
(

1

1 + e−Ji j−h(i)
i

− 1

1 + e−h(i)
i

)
.

(A11)

The correlation follows analogously,

〈xix j〉 = − dF
dh(i+1)

j

∂h(i+1)
j

∂Ji j
= 〈x j〉

1 + e−Ji j−h(i)
i

. (A12)

Thus, by proceeding in the opposite order from which the
nodes were removed, we can compute the average activities
〈xi〉 and correlations 〈xix j〉 for (i j) ∈ T . For the correlations
〈xix j〉 off the tree (that is, for (i j) �∈ T ), see Appendix E.

APPENDIX B: MAXIMUM ENTROPY ON A TREE

We now solve the inverse problem for the parameters hi and
Ji j given the observations 〈xi〉 and 〈xix j〉 on a tree T . Inverting

Eqs. (A11) and (A12) yields

h(i)
i = ln

[ 〈xi〉 − 〈xix j〉
1 − 〈xi〉 − 〈x j〉〈xix j〉

]
, (B1)

Ji j = ln

[ 〈xix j〉
〈x j〉 − 〈xix j〉

]
− h(i)

i . (B2)

Combining the above equations, we can solve for the inter-
action Ji j in Eq. (6). To compute the local field hi, we note
that we can repeat the procedure in Appendix A ending at any
node; this is equivalent to choosing the root of the tree. If we
choose i to be the final node, then we have

h(N )
i = ln

〈xi〉
1 − 〈xi〉 . (B3)

Additionally, for each neighbor j ∈ Ni, Eq. (A4) tells us that
we receive a contribution to h(N )

i of the form

h( j+1)
i − h( j)

i = ln

[
eJi j+h( j)

j + 1

eh( j)
j + 1

]
(B4)

= ln

[ 〈xi〉(1 − 〈xi〉 − 〈x j〉 + 〈xix j〉)

(1 − 〈xi〉)(〈xi〉 − 〈xix j〉)

]
.

Combining these contributions yields

hi = h(N )
i −

∑
j∈Ni

(
h( j+1)

i − h( j)
i

)

= ln
〈xi〉

1 − 〈xi〉 +
∑
j∈Ni

ln

[
(1 − 〈xi〉)(〈xi〉 − 〈xix j〉)

〈xi〉
(
1 − 〈xi〉 − 〈x j〉 + 〈xix j〉

)
]
.

(B5)

We have thus arrived at an analytic solution to the maximum
entropy problem on a tree.

APPENDIX C: INFORMATION IN A TREE
OF CORRELATIONS

Our ability to efficiently construct the optimal tree T de-
pends critically on the decomposition of the information IT
into the sum of mutual information Ii j over pairs (i j) ∈ T
[Eq. (8)]. To derive this result, we note that for each con-
nection (i j) ∈ T , the observables 〈xi〉, 〈x j〉, and 〈xix j〉 fully
define the marginal distribution Pi j (xi, x j ). Now consider a
new tree T ′ = T /(i j) with the connection (i j) removed, such
that we do not observe 〈xix j〉. Since T has no loops, after
removing (i j) the two elements i and j become independent.
Meanwhile, the dependence of the rest of the system on i and
j remains fixed. Thus, observing the correlation 〈xix j〉 leads
to a drop in entropy,

ST ′ − ST = S(Pi ) + S(Pj ) − S(Pi j ) = Ii j, (C1)

where Ii j is the observed mutual information between i and j.
Repeating the above argument for every correlation in T , we
arrive at Eq. (8).

APPENDIX D: ESTIMATING MUTUAL INFORMATION

In order to estimate the mutual information between neu-
rons Ii j , one must correct for finite-data effects [48]. To do
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FIG. 9. Correcting for finite-data effects on mutual information.
For a given pair of neurons i and j, we plot the estimated mutual
information Ii j [Eq. (D1)] vs the inverse data fraction for individual
subsamples of the data (gray). Repeating 100 times, we plot the
average Ii j for each data fraction (black), a linear fit (dashed line),
and the infinite-data estimate (red). Data points and error bars reflect
means and standard deviations over the 100 repetitions.

so, we subsample the data hierarchically for different data
fractions {1, 0.9, . . . , 0.2, 0.1} such that each subsample is
contained within the larger subsamples. Additionally, to pre-
serve the dependencies between consecutive data points x(m)

and x(m+1), we sample temporally contiguous fractions of the
data. To ensure that each point is sampled with equal proba-
bility, we allow subsamples that span the beginning and end
of the recording.

For each subsample, we estimate the mutual information
between neurons i and j using the equation

Ii j =
∑
xi,x j

P̃i j (xi, x j ) log
P̃i j (xi, x j )

P̃i(xi )P̃j (x j )
, (D1)

where

P̃i j (xi, x j ) = 1

M + 1

(
1 +

M∑
m=1

δxi,x
(m)
i

δx j ,x
(m)
j

)
, (D2)

P̃i(xi ) =
∑

x j

P̃i j (xi, x j ). (D3)

The pseudocounts in Eq. (D2) ensure that the mutual informa-
tion estimates do not diverge. After estimating Ii j for each data
fraction, following Ref. [48] we extrapolate to the infinite-data
limit using a linear fit with respect to the inverse data fraction.
Repeating this process 100 times, we arrive at a distribution
of infinite-data estimates for Ii j from which we can compute
a mean and standard deviation (Fig. 9). We consider a mu-
tual information Ii j significant if the mean is more than two
standard deviations above zero.

To check the above procedure, we note that shuffling
the activity of each neuron in time should destroy the mu-
tual information Ii j . Indeed, for time-shuffled data, we do
not observe a single significant mutual information in the
population.

APPENDIX E: COMPUTING ALL CORRELATIONS

Given a maximum entropy model with parameters hi and
Ji j on a tree T , in Appendix A we showed how to compute
the averages 〈xi〉 and correlations 〈xix j〉 on the tree. Specifi-
cally, we computed the partition function Z by summing over
variables xi in the order i = 1, 2, . . . , N and then computed
statistics in the reverse order. Here, we show how to compute
the correlations 〈xix j〉 not on the tree, that is, for (i j) �∈ T .
To begin, we assume that we have computed the correlations
〈x jxk〉 for all nodes k > i > j. Then, if we compute 〈xix j〉, the
procedure will follow by induction.

From the Boltzmann distribution in Eq. (5), we have

d〈xi〉
dh j

= 〈xix j〉 − 〈xi〉〈x j〉. (E1)

We already know how to compute the averages 〈xi〉 and 〈x j〉,
so all that remains is to calculate the above derivative. Let
p(i) denote the parent of i (that is, the final neighbor when i
is removed) and likewise for p( j). Differentiating Eq. (A11)
with respect to hj , we have

d〈xi〉
dh j

= ∂〈xi〉
∂h(i)

i

dh(i)
i

dh j
+ ∂〈xi〉

∂〈xp(i)〉
d〈xp(i)〉

dh j
. (E2)

We note that

d〈xp(i)〉
dh j

= 〈xp(i)x j〉 − 〈xp(i)〉〈x j〉, (E3)

which we have already computed by assumption, since
p(i) > i. From Eq. (A11) we have

∂〈xi〉
∂h(i)

i

= e−h(i)
i

(1 + e−h(i)
i )2

(E4)

+ 〈xp(i)〉
(

e−Jip(i)−h(i)
i

(1 + e−Jip(i)−h(i)
i )2

− e−h(i)
i

(1 + e−h(i)
i )2

)
,

and

∂〈xi〉
∂〈xp(i)〉 = 1

1 + e−Jip(i)−h(i)
i

− 1

1 + e−h(i)
i

. (E5)

Finally, we note that the dependence of h(i)
i on h j runs only

through h( j+1)
p( j) , such that

dh(i)
i

dh j
= dh(i)

i

dh( j+1)
p( j)

∂h( j+1)
p( j)

∂h j
. (E6)

Since p( j) > j, we can assume that we have already com-

puted dh(i)
i

dh( j+1)
p( j)

. Finally, Eq. (A4) yields

∂h( j+1)
p( j)

∂h j
= 1

1 + e−Jj p( j)−h( j)
j

− 1

1 + e−h( j)
j

. (E7)

Plugging everything into Eq. (E2), and inducting on i > j, one
can compute the correlations 〈xix j〉 between all variables.
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FIG. 10. Pairwise statistics in minimum distance and random
trees. (a) Ranked order of significant mutual information in the
population (black), two-standard-deviation errors (shaded region),
and predictions of the minimum distance tree (blue) and a random
tree (cyan). (b) Correlation coefficients predicted in the minimum
distance and random tree models vs those in the data, with dashed
lines indicating equality. All pairs are divided evenly into bins along
the x axis, with solid lines and shaded regions reflecting means and
errors (standard deviations) within bins.

APPENDIX F: PREDICTIONS OF RANDOM AND
MINIMUM DISTANCE TREES

In Sec. IV we studied the predictions of the minimax
entropy model PT corresponding to the optimal tree T . For
comparison, here we consider the predictions of the minimum
distance and random trees. While the optimal tree captures
IT = 26.2 bits of information (IT /Sind = 14.4% of the inde-
pendent entropy), the minimum distance tree only captures
11.9 bits of information (6.5% of the independent entropy),
and a typical random tree only captures (N − 1)Ī = 0.4 bits
(0.2% of the independent entropy).

For each tree, we can predict the mutual information Ii j

and correlation coefficients between all pairs of neurons using
the procedure in Appendix E. Since the minimum distance
tree includes some of the largest mutual information in the
population, it is able to match the distribution of Ii j (within
errors) out to N ∼ 100 neurons [Fig. 10(a)]. However, the
minimum distance tree fails to predict the observed correla-
tions across most of the dynamic range of the data [Fig. 10(b)].
Meanwhile, random trees typically include only weak mutual
information [Fig. 10(a)], such that their predictions are nearly
indistinguishable from a population of independent neurons
[Fig. 10(b)].

For the minimax entropy model, a backbone of strong
positive interactions combine to produce accurate predictions
for the distribution P(K ) of population-wide synchrony K
(Fig. 4). By contrast, random trees predict a Gaussian distri-
bution consistent with independent neurons, and the minimum
distance tree only produces a slightly broader distribution
(Fig. 11). In both models, large-scale synchrony in activity
(K � 50) and silence (K � 10) occurs significantly less fre-
quently than observed in the data.

FIG. 11. Synchronized activity in minimum distance and random
trees. Distribution P(K ) of the number of simultaneously active neu-
rons K in the data (black), the Gaussian distribution for independent
neurons with mean and variance 〈K〉exp (dashed), and the predictions
of the minimum distance tree (blue) and a random tree (cyan). As
in Fig. 4, to estimate P(K ) and error bars (two standard deviations),
we first split the data into 1-min blocks to preserve dependencies be-
tween consecutive samples. We then select one-third of these blocks
at random and repeat 100 times. For each subsample of the data, we
fit the maximum entropy model PT for each tree T and predict P(K )
using a Monte Carlo simulation.

APPENDIX G: THERMODYNAMIC QUANTITIES

Consider a system with fields hi, interactions Ji j that lie on
a tree T , and temperature T . The Boltzmann distribution P(x)
takes the form in Eq. (9) with energy E (x) defined in Eq. (10).
Here, we denote averages over P(x) by 〈·〉, while dropping the
subscript T . The susceptibility χ [Eq. (11)] can be computed
using the results of Appendix E.

To compute the heat capacity C [Eq. (12)], we begin with
the average energy

〈E (x)〉 = T 2 d ln Z

dT
= −T 2 d (F/T )

dT
= F − T

dF
dT

. (G1)

To calculate the free energy F , we proceed as in Appendix A.
After including the temperature T , Eqs. (A4) and (A5) take
the form

h(i+1)
j = h(i)

j + T ln

[
e

1
T (Ji j+h(i)

i ) + 1

e
1
T h(i)

i + 1

]
, (G2)

F (i+1) = F (i) − T ln
[
e

1
T h(i)

i + 1
]
. (G3)

Iteratively summing over each variable, we arrive at the free
energy F = F (N+1). To compute dF

dT , we take derivatives of
Eqs. (G4) and (G5), yielding

dh(i+1)
j

dT
= dh(i)

j

dT
+ ln

[
e

1
T (Ji j+h(i)

i ) + 1

e
1
T h(i)

i + 1

]
− 1

1 + e− 1
T h(i)

i

(
dh(i)

i

dT
− h(i)

i

T

)
+ 1

1 + e− 1
T (Ji j+h(i)

i )

(
dh(i)

i

dT
− Ji j + h(i)

i

T

)
, (G4)
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dF (i+1)

dT
= dF (i)

dT
− ln[e

1
T h(i)

i + 1] − 1

1 + e− 1
T h(i)

i

(
dh(i)

i

dT
− h(i)

i

T

)
. (G5)

Iterating the above equations, we arrive at the derivative dF
dT = dF (N+1)

dT , which completes our calculation of the average energy
[Eq. (G1)].

The heat capacity is given by

C = d〈E (x)〉
dT

= −T
d2F
dT 2

. (G6)

Taking derivatives of Eqs. (G4) and (G5), we have

d2h(i+1)
j

dT 2
= d2h(i)

j

dT 2
− 1

1 + e− 1
T h(i)

i

d2h(i)
i

dT 2
− 1

T

e− 1
T h(i)

i

(1 + e− 1
T h(i)

i )2

(
dh(i)

i

dT
− h(i)

i

T

)2

+ 1

1 + e− 1
T (Ji j+h(i)

i )

d2h(i)
i

dT 2
+ 1

T

e− 1
T (Ji j+h(i)

i )

(1 + e− 1
T (Ji j+h(i)

i ) )2

(
dh(i)

i

dT
− Ji j + h(i)

i

T

)2

, (G7)

d2F (i+1)

dT 2
= d2F (i)

dT 2
− 1

1 + e− 1
T h(i)

i

d2h(i)
i

dT 2
− 1

T

e− 1
T h(i)

i

(1 + e− 1
T h(i)

i )2

(
dh(i)

i

dT
− h(i)

i

T

)2

. (G8)

Finally, after computing d2F
dT 2 = d2F (N+1)

dT 2 iteratively, we have arrived at the heat capacity C.
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and M. J. Berry, Error-robust modes of the retinal population
code, PLoS Comput. Biol. 12, e1005148 (2016).

[30] C. Chow and C. Liu, Approximating discrete probability distri-
butions with dependence trees, IEEE Trans. Inf. Theory 14, 462
(1968).

[31] C. W. Lynn, Q. Yu, R. Pang, S. E. Palmer, and W. Bialek,
companion paper, Exactly solvable statistical physics models
for large neuronal populations, Phys. Rev. Res. 7, L022039
(2025).

[32] J. L. Gauthier and D. W. Tank, A dedicated population
for reward coding in the hippocampus, Neuron 99, 179
(2018).

[33] C. E. Shannon, A mathematical theory of communication, Bell
Syst. Tech. J. 27, 379 (1948).

[34] E. Schneidman, S. Still, M. J. Berry II, and W. Bialek, Network
information and connected correlations, Phys. Rev. Lett. 91,
238701 (2003).

[35] J. P. Sethna, Statistical Mechanics: Entropy, Order Parameters,
and Complexity (Oxford University Press, New York, 2021),
Vol. 14.

[36] C. Moore and S. Mertens, The Nature of Computation (Oxford
University Press, Oxford, 2011).

[37] S. Song, P. J. Sjöström, M. Reigl, S. Nelson, and D. B.
Chklovskii, Highly nonrandom features of synaptic connectiv-
ity in local cortical circuits, PLoS Biol. 3, e68 (2005).

[38] C. W. Lynn and D. S. Bassett, The physics of brain net-
work structure, function and control, Nat. Rev. Phys. 1, 318
(2019).

[39] A. Lin, R. Yang, S. Dorkenwald, A. Matsliah, A. R. Sterling,
P. Schlegel, S.-C. Yu, C. E. McKellar, M. Costa, K. Eichler
et al., Network statistics of the whole-brain connectome of
Drosophila (2023), doi:10.1101/2023.07.29.551086.

[40] R. Albert and A.-L. Barabási, Statistical mechanics of complex
networks, Rev. Mod. Phys. 74, 47 (2002).

[41] J. J. Harris, R. Jolivet, and D. Attwell, Synaptic energy use and
supply, Neuron 75, 762 (2012).

[42] S. B. Laughlin and T. J. Sejnowski, Communication in neuronal
networks, Science 301, 1870 (2003).

[43] D. J. Watts and S. H. Strogatz, Collective dynamics of “small-
world” networks, Nature (London) 393, 440 (1998).

[44] S. Schnabel, D. T. Seaton, D. P. Landau, and M. Bachmann,
Microcanonical entropy inflection points: Key to systematic
understanding of transitions in finite systems, Phys. Rev. E 84,
011127 (2011).

[45] R. Peierls, On Ising’s model of ferromagnetism, in Mathemat-
ical Proceedings of the Cambridge Philosophical Society, Vol.
32 (Cambridge University Press, Cambridge, England, 1936),
pp. 477–481.

[46] R. J. Baxter, Exactly Solved Models in Statistical Mechanics
(Elsevier, New York, 2016).

[47] C. W. Lynn, C. M. Holmes, and S. E. Palmer, Heavy-tailed
neuronal connectivity arises from Hebbian self-organization,
Nat. Phys. 20, 484 (2024).

[48] S. P. Strong, R. Koberle, R. R. de Ruyter van Steveninck, and
W. Bialek, Entropy and information in neural spike trains, Phys.
Rev. Lett. 80, 197 (1998).

054411-14

https://doi.org/10.1073/pnas.1514188112
https://doi.org/10.1073/pnas.0609152103
https://doi.org/10.1073/pnas.0805923106
https://doi.org/10.1371/journal.pone.0028766
https://arxiv.org/abs/1207.2484
https://doi.org/10.1073/pnas.1118633109
https://doi.org/10.1126/science.aba3304
https://doi.org/10.1103/PhysRevX.9.011022
https://doi.org/10.1162/neco.1997.9.8.1627
https://doi.org/10.1371/journal.pcbi.1005148
https://doi.org/10.1109/TIT.1968.1054142
https://doi.org/10.1103/PhysRevResearch.7.L022039
https://doi.org/10.1016/j.neuron.2018.06.008
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1103/PhysRevLett.91.238701
https://doi.org/10.1371/journal.pbio.0030068
https://doi.org/10.1038/s42254-019-0040-8
https://doi.org/10.1101/2023.07.29.551086
https://doi.org/10.1103/RevModPhys.74.47
https://doi.org/10.1016/j.neuron.2012.08.019
https://doi.org/10.1126/science.1089662
https://doi.org/10.1038/30918
https://doi.org/10.1103/PhysRevE.84.011127
https://doi.org/10.1038/s41567-023-02332-9
https://doi.org/10.1103/PhysRevLett.80.197

