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Motivated by recent observations that mutation rates can be correlated with individual fitness, we
analyze an evolutionary hill-climbing model with fitness-dependent mutation rates. Our results show that a
mutation rate that decreases with increasing relative fitness can greatly accelerate the accumulation of
beneficial mutations. Moreover, we show that a lower mutation rate for fitter individuals can prevent
“mutational meltdown” of small populations by decreasing the probability of fixation of deleterious
mutations. These findings suggest potential strategies for accelerating the adaptation of populations to
environmental changes.
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Diversification through random mutation is a fundamen-
tal driving force for evolution in living systems. The rate at
which a population adapts is governed by the variation in
fitness within the population, which arises from a balance
between opposing forces—mutation and selection [1–3].
Typically, mutation rates are assumed to be constant across
the population. However, recent finding show that B cells
expressing high-affinity antibodies experience a reduced
mutation rate per division through modulating their time
spent in G0=G1 [4,5]. Mechanistically, dynamic mutation
rates in B cells are regulated by T cells, which provide help
signals proportional to B cell affinity, thereby instructing
for the number and speed of B cell divisions [6]. Faster B
cell division acts to shorten time spent in G0=G1 phases,
which limits exposure of the genome to the mutagenic
enzyme activation-induced cytidine deaminase [7], and
effectively lowering the per-division mutation rate for
higher-affinity B cells over the course of a proliferative
burst (approximately six divisions for high-affinity B cells).
Outside of affinity maturation, correlations between

mutation rate and fitness have been observed in a
variety of systems, including RNA viruses and
Escherichia coli, with both positive and negative correla-
tions reported [8–10]. Motivated by these findings, we set
out to understand how fitness-mutation rate correlations

could influence population evolution and whether they can
confer evolutionary advantages.
Numerous studies have characterized the role of selection,

mutation, and population size on the adaptation of asexual
populations [11–17]. However, the case of within-population
fitness-dependent mutation rates has been mostly limited to
binary mutator or nonmutator cases [18–20]. To examine
howmore general fitness-dependent mutation rates influence
the evolution of an asexual population, we consider a simple
birth-death process with mutations [21].
Here, we characterize each individual by their heritable

phenotype (e.g., antibody affinity for B cells), which we
classify with a discrete coordinate xn that corresponds with a
birth rate, aka “fitness,” BnðtÞ [22,23]. Without loss of
generality, we order xn such that BnðtÞ is a monotonically
increasing function of n. Upon each birth event, a non-
neutral mutation occurs with phenotype-dependent proba-
bility pnðtÞ, and these cause a change in the new individual’s
phenotype and thus its fitness [Fig. 1(a)]. To maintain the
average population size of N ¼ P

n Nn, where Nn is the
number of individuals with phenotype xn, we set a global
death rate proportional to the population’s average fitness. To
systematically expand in the terms of the population size, we
let Nn ¼ Nφn þ

ffiffiffiffi
N

p
ξn, where φn is the mean-field pop-

ulation density and ξn represents demographic noise [24].
The mean-field dynamics can be derived from the corre-
sponding master equation as (see the Appendix)

∂tφnðtÞ ¼ ½BnðtÞ − hBniðtÞ�φnðtÞ þ J nðtÞ; ð1Þ

where hfniðtÞ ¼
P

n φnðtÞfn, and J n is the flux due to
mutations. J n determines the net flux of individuals into
each phenotype due to mutations, and can be written as
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J nðtÞ ¼ −HnðtÞ þ
X

m≠n
Kn−mHmðtÞ; ð2Þ

where Kn−m is the normalized mutation kernel representing
the probability that a mutation induces a change from
phenotype xm to xn, and HnðtÞ ¼ pnðtÞBnðtÞφnðtÞ is the
density outflux from xn due to mutations. Note that in the
mean-field dynamics, finite population size is accounted for
by setting BnðtÞ ¼ 0 if φnðtÞ < 1=N [25].
From Eq. (1), an expression for the adaptation velocity

vðtÞ≡ dhni=dt can be obtained by multiplying by n and
integrating

vðtÞ ¼ Cn;BðtÞ þ μKhBnpniðtÞ; ð3Þ

where Cn;BðtÞ ¼ hnBni − hnihBni is the covariance func-
tion, and μK ¼ P

Δn ΔnKΔn is the first moment of the
mutation kernel which characterizes the average effect of
mutations.
The first term in Eq. (3) represents the contribution from

selection, while the second term accounts for mutations.
Since most non-neutral mutations are deleterious (reduce
fitness), this implies μK < 0. As a result, a negative
correlation between Bn and pn, indicating that fitter
individuals have a lower mutation probability per division,
maximizes v.
To gain further intuition, we consider a simple mutation

model where a certain fraction γb of mutations are
beneficial, with each increasing n by unity (n → nþ 1),
and a fraction 1 − γb are deleterious (n → n − 1).
Furthermore, we limit Bn and pn to be linear functions
of relative fitness, i.e.,

BnðtÞ ¼ B0 þ s½n − hniðtÞ�; ð4aÞ

pnðtÞ ¼ P0 þ ðη=sÞ½BnðtÞ − hBniðtÞ�: ð4bÞ

Here, B0 ¼ 1 (set to unity by choosing an appropriate unit
of time) is the average birth rate of the population, s > 0 is
the fitness gain/loss due to a mutation, P0 is the average
mutation probability at each birth event, and η gives the
slope of the mutation probability as a function of fitness. In
this case, the expression for v [Eq. (3)] simplifies to

vðtÞ ¼ sð1þ μKηÞσ2ðtÞ þ μKP0B0; ð5Þ

where σ2 ¼ hn2i − hni2 is the phenotypic variance in the
population, and μK ¼ 2γb − 1.
As seen in Eq. (6), the speed of adaptation v is influenced

by η. For a modest population size of N ¼ 104, and when
most mutations are deleterious (γb ¼ 0.05), a uniform
mutation probability (η ¼ 0) results in a slow, or even
negative adaptation speed due to the high probability of
each mutation being deleterious [see Fig. 1(b)]. On the
other hand, a mutation probability that decreases with

relative fitness (η < 0) maximizes the adaptation speed v.
Interestingly, whether a decreasing or an increasing fitness-
dependent mutation rate is best for adaptation depends on
P0 and γb. As shown in Fig. 1(c), we find that η < 0 is
optimal when mutations are frequent (large P0) but
rarely beneficial (small γb), which is the case, e.g., in B
cell (antibody) affinity maturation [18]. Conversely, if
deleterious mutations occur less frequently (due either to
small P0 or large γb), η > 0 becomes optimal, as further
described below.
The value of η that maximizes v undergoes a strikingly

rapid transition as the “phase boundary” in Fig. 1(c) is
crossed. As shown in Fig. 1(d), the optimal η is negative for
small γb, but dramatically increases to a positive value for
larger γb. This jump in η reflects a shift in the optimal
adaptation strategy from a selection driven mechanism at
small γb, to a flux drivenmechanism at larger γb. These two
mechanisms can be understood heuristically as follows:
From a system-size expansion of the master equation, the
mean-field dynamics and the demographic noise of the
current fittest individuals, aka the “nose” of the population,
are given by

FIG. 1. (a) Schematic of the birth-death-mutation process along
a phenotype coordinate. (b) Adaptation speed v shown as a
function of the slope in mutation probability η; for several values
of the average mutation probability P0. (c) “Phase diagram”
illustrating the sign of η that maximizes v; solid curve shows the
boundary as a guide to the eye. (d) Optimal η as a function of the
fraction of beneficial mutation γb, for different values of fitness
change per mutation s. Unless otherwise specified, simulation
parameters were γb ¼ 0.05, s ¼ 0.15, and N ¼ 104. For (b)–(d),
simulation of the mean-field dynamics (see Supplemental
Material [26]) was done with Δt ¼ 0.001 (in unit of B−1

0 ).
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∂tφn� ¼ rn�φn� þ γbJn� ; ð6aÞ

∂thξ2n� iΠ ¼ 2rn�hξ2n� iΠ þ ρn�φn� þ γbjn� ; ð6bÞ

where xn� denotes the nose phenotype, rn ¼ ð1 − pnÞBn −
hBni and ρn ¼ ð1þ pnÞBn þ hBni are the effective
Malthusian growth parameters, and Jn� and jn� are muta-
tional source terms (see the Appendix).
Assuming the mutation fluxes Jn� and jn� remain

approximately constant during the establishment of the
nose, Eqs. (6a) and (6b) reveal two distinct mechanisms
of adaptative hill climbing, depending on the sign
of rn� : (i) Selection driven hill climbing (rn� > 0, i.e.,
pn� < 1 − B0=Bn�)—When mutations at the nose are rare,
net nose population growth due to birth events dominates
over mutation flux, leading to exponential growth
of the nose population, with corresponding demographic
noise (φn� ∼ ern� t, and hξ2n� iΠ ∼ φ2

n�). In this case, establish-
ment of the nose is reliant on preferential birth events
conferred by the nose’s fitness advantage. (ii) Flux
driven hill climbing (rn� < 0, i.e., pn� > 1 − B0=Bn�)—
Alternatively, the nose population can be stabilized by
sufficient density influx via beneficial mutations from
phenotype xn�−1, leading to fixed point φ̄n� ¼ γbJn�=jrn� j
with ξ2n� ¼ ðρn�φn� þ γbjn� Þ=2jrn� j.
This distinction naturally leads to the question: how

might η be adjusted to ensure the optimal hill-climbing
strategy? When beneficial mutations are rare (small γb), the
mutation flux alone is too small to stabilize the nose
population. Thus, exponential growth through a selection
driven mechanism (via small mutation probability pn�

corresponding to η < 0) is needed for optimal adaptation.
Conversely, when beneficial mutations are frequent (large
γb), the flux driven mechanism (with larger pn�, corre-
sponding to η > 0) leads to a sufficiently large stable nose
population capable of propagating new fittest mutants. For
these reasons, the optimal value of η is strongly dependent
on both γb and P0.
In the biologically relevant regime where beneficial

mutations are rare, what determines the optimal value of
η? To answer this question, we utilized an agent-based
simulation, where we could explicitly take into account the
stochasticity of the nose population (see Supplemental
Material [26]). Using the agent-based simulation, we found
that for the selection driven mechanism, the impact of the
mutation-fitness correlation embodied by η on the dynam-
ics of the fittest individuals reflects a tradeoff between two
key timescales: an “entrenchment time” τent, which reflects
the time required for the nose to overcome drift-driven
extinction, and τnew, the typical time it takes an entrenched
nose population to acquire a positive, beneficial mutation,
thereby generating a new fittest individual, i.e., a new
“nose” (see Fig. 2, inset).
Intuitively, when beneficial mutations are rare, τent

increases with η, as a higher mutation rate at the nose

results in frequent acquisition of deleterious mutations,
which promotes extinction (Fig. 2, solid circles).
Conversely, increasing η expedites the appearance of the
next fittest individual by increasing the mutation rate at the
nose, thus increasing the chances of acquiring a beneficial
mutation and decreasing τnew (Fig. 2, empty circles). Thus,
optimizing the speed of adaptation requires balancing the
two timescales τent and τnew.
The speed of adaptation is not the only consideration in

evolving populations. For example, deleterious mutations
can often fix in asexual populations due to lack of
recombination. Continued accumulation of deleterious
mutations can then lead to declining fitness of the whole
population ultimately leading to extinction by “mutational
meltdown” [27,28]. As η has a strong influence on the
mutational dynamics, we wondered whether a nonzero η
could mitigate mutational meltdown.
In selecting the functional form of fitness [Eq. (4a)], we

assumed a competitive regime where the average birth rate
remains fixed at B0, with population size controlled by a
global death rate, ensuring no overall extinction. Despite
this simplification, the model can still provide insights into
the population-level accumulation rates of beneficial and
deleterious mutations. The speed of adaptation can be
understood as the net difference between the average per-
cell rates of accumulation for beneficial and deleterious
mutations, denoted ṁþ and ṁ− (i.e., v ¼ ṁþ − ṁ−).
Using agent-based simulations to individually track the

accumulation of beneficial and deleterious mutations, we
observe that the accumulation rate of beneficial mutations
ṁþ [Fig. 3(a), solid circles] remains relatively constant and
symmetric with respect to η. In contrast, the accumulation
rate of deleterious mutations ṁ− [Fig. 3(a), empty circles]
is significantly slower for η < 0, nearly vanishing at
sufficiently negative η values. Thus, a mutation probability

FIG. 2. Average time spent attempting to entrench the fittest
(nose) population τent (solid circles), and the average time
required to generate the new fittest individual τnew (empty circles)
shown as a function of η. Agent-based simulations (see Supple-
mental Material [26]) were used with parameters s ¼ 0.15,
N ¼ 104, P0 ¼ 0.5, γb ¼ 0.05, Δt ¼ 0.003. Error bars represent
the standard error over 10 simulation runs. Inset: example of a
time trajectory of the number of fittest individuals Nnose.
Following multiple extinction events, the nose becomes en-
trenched; the empty circle represents the point where a new
nose is first generated.
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that decreases with relative fitness can effectively prevent
the buildup of deleterious mutations, while maintaining the
accumulation rate of beneficial mutations.
Intuitively, how η influences the accumulation of del-

eterious mutations can be illustrated as follows. As dis-
cussed above, when η > 0, there is a sufficient flux of
beneficial mutations to enable initially unfit individuals to
“swim upstream” and end up at the nose, where they have
the potential to become fixed (ancestral to the entire
population). In this case, their deleterious mutations will
also be permanently fixed in the population. Conversely,
when η < 0, the mutation-driven loss of fitness among unfit
individuals is accelerated, leading to their elimination from
the population by selection. Thus, η < 0 creates a system in
which fitter individuals are shielded from deleterious
mutations, while unfit individuals are quickly “purged,”
reducing the overall rate of accumulation of deleterious
mutations by the population.
This purging effect is illustrated in Fig. 3(b), which

shows that when η ¼ −0.1, only the individuals at the nose
of the population’s fitness distribution have the potential to
become fixed. In contrast, when η ¼ 0.1, individuals with
lower relative fitness also have a chance of fixation.
Notably, we observe an approximately sixfold increase
in pfixed by nose, the probability that a fixation event origi-
nated from an individual at the nose, when η ¼ −0.1
compared to when η ¼ 0.1 [see Fig. 3(b), inset]. In a
nutshell, a negative η preferentially stabilizes high-fitness

individuals, enhancing the likelihood of fixation among the
fittest members, which typically have the fewest deleterious
mutations, and this reduces the accumulation of deleterious
mutations in the population.
Mutation rates are subject to selection, and correlations

between fitness and mutation rates have been observed
across multiple biological systems [8–10]. Whether this
relationship arises from biological constraints, such as low-
fitness individuals being unable to allocate resources for
high-fidelity reproduction, or from evolutionary optimiza-
tion remains unclear. Nonetheless, in this Letter, we
demonstrated that such a correlation can confer significant
evolutionary benefits, particularly when beneficial muta-
tions are rare, a scenario common in biology [29].
Specifically, fitness-dependent mutation rates can acceler-
ate adaptation and reduce the fixation of deleterious
mutations. In the case of a well-defined fitness maximum,
a negative η will enhance the stability of the quasi-species
localized around the maximum [30].
These advantages are particularly relevant in systems

requiring rapid adaptation, such as the adaptive immune
system, where B cells must evolve quickly to produce
increasingly high-affinity antibodies to bind and neutralize
pathogens—a process that can occur over weeks to
months [31]. Similarly, in asexual populations, fitness-
dependent mutation rates may mitigate the risk of muta-
tional meltdown, a critical factor in population extinction.
This effect becomes more significant the more loci there are
for deleterious mutations. Beyond natural systems, our
findings have implications for improving evolutionary
algorithms [32] and directed evolution [33], which are
widely used to optimize complex systems, such as iden-
tifying proteins with desired characteristics [34].
Incorporating fitness-dependent mutation rates into these
frameworks could optimize search strategies based on the
fitness landscape and the primary objective, such as
maximizing speed or minimizing unnecessary steps. This
approach could improve processes like particle swarm
optimization [35] by tuning the exploration and exploita-
tion balance through fitness-dependent mutation rates. In
directed evolution, decreasing mutation rates based on
functional output could prevent unnecessary mutations in
fit variants, thereby maintaining structural stability—
addressing a common challenge in protein engineer-
ing [36].
Finally, investigating the implications of fitness-depen-

dent mutation rates beyond the simple hill-climbing model
presented here could be fruitful for understanding the long-
term stability and adaptive potential of both natural and
engineered systems.
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End Matter

Appendix: System-size expansion—The master
equation corresponding to the birth-death-mutation
model is

∂

∂t
PðN⃗; tÞ ¼

X

n

�
ÛðgÞ

n þ ÛðmÞ
n

�
NnPðN⃗; tÞ; ðA1Þ

where P
�
N⃗; t

�
is the probability density corresponding to

configuration N⃗ ¼ ½…; Nn;…�T . In Eq. (A1), ÛðgÞ
n is the

local growth operator corresponding to the birth-death

process, and ÛðmÞ
n is the local mutation operator. In terms

of the local creation and annihilation operators

a�n f
�
N⃗
� ¼ f

�
N⃗ � 1ðnÞ

�
, where 1ðnÞm ¼ δnm [24], these

operators are

ÛðgÞ
n ¼ Bnða−n − 1Þ þ hBniðaþn − 1Þ; ðA2aÞ

ÛðmÞ
n ¼ hþn ðaþn a−nþ1 − 1Þ þ h−n ðaþn a−n−1 − 1Þ; ðA2bÞ

where hþn ¼ γbpnBn and h−n ¼ γdpnBn are, respectively,
beneficial and deleterious mutation rates. Note that in
Eq. (A2a), hBni is an average over a specific
configuration N⃗, therefore the master equation [Eq. (A1)]
is linear in P

�
N⃗; t

�
.

To perform a system-size expansion, we decompose Nn
into its mean-field and noise components [24], i.e.,
Nn ¼ Nφn þ

ffiffiffiffi
N

p
ξn, and rewrite Eq. (A1) in terms of a

probability density,Π
�
ξ⃗; t

�
, expressed as a function of noise

configuration ξ⃗ ¼ ½…; ξn;…�T , i.e., P�N⃗; t
�
→ Π

�
ξ⃗; t

�
.

Taylor expanding the local operators and collecting like
orders of system size N yields the mean-field equation
[Eq. (1)]

∂φn

∂t
¼ rnφn þ hþn−1φn−1 þ h−nþ1φnþ1; ðA3Þ

and the dynamics for the variance in the noise,

∂

∂t
hξ2niΠ ¼ 2rnhξ2niΠ þ ρnφn

þ
X

i∈ f−1;1g
hin−iðφn−i þ 2hξnξn−iiΠÞ; ðA4Þ

where hfniΠ denotes average over Π
�
ξ⃗; t

�
. Note that by

definition, φn ¼ 0 for n > n�. Therefore, the flux terms
in Eqs. (6a) and (6b) are Jn� ¼ pn�−1Bn�−1φn�−1, and
jn� ¼ pn�−1Bn�−1ðφn�−1 þ 2hξn�ξn�−1iΠÞ.
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