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Biomolecular condensates frequently rely on membrane interactions for localization, recruitment,
and chemical substrates. These interactions are often mediated by membrane-anchored mobile
tethers, a feature overlooked by traditional wetting models. Here, we propose a general theoret-
ical framework to study how mobile tethers impact both equilibrium and dynamic properties of
condensate wetting. We show that a favorable tether-condensate interaction leads to tether enrich-
ment at the condensate-membrane interface, which reduces the surface tension with the membrane
and modifies the equilibrium contact angle. Increasing tether abundance on the membrane can
drive transitions between wetting regimes, with only a modest binding energy required for biologi-
cally relevant scenarios. Furthermore, by helping condensates coat membranes, mobile tethers can
facilitate condensate localization to junctions of membrane structures, such as the reticulated mem-
branes inside the algal pyrenoid. These results provide a framework to study the implications of
tether-mediated condensate-membrane interactions for cellular organization and function.

Biomolecular condensates, intracellular compartments
formed via phase separation, are essential for diverse bio-
logical processes, including gene regulation, metabolism,
and cell signaling [1, 2]. In many instances, proper
condensate function relies on interactions with mem-
branes [3, 4]. These membrane interactions can spatially
organize condensates, concentrate interaction partners,
and facilitate access to reactants. The algal pyrenoid
exemplifies this interplay: condensates enriched with the
CO2-fixing enzyme Rubisco form around traversing mem-
branes that supply CO2 to enhance photosynthetic effi-
ciency. Conversely, condensates can also facilitate mem-
brane processes such as transport, signaling, force gen-
eration, and structural remodeling. For example, Focal
Adhesion Kinase (FAK) forms condensates on the cyto-
plasmic membrane, binding to lipids at sites where focal
adhesions assemble, thereby regulating cell motility [5].
Similarly, B cell activation involves condensation on the
plasma membrane that is essential for downstream sig-
naling [2]. More broadly, unraveling the dynamic rela-
tionship between condensates and membranes is proving
to be essential for understanding intracellular organiza-
tion and function.

In many cases, membrane-associated condensates do
not directly wet membranes. Instead, they adhere to
membrane surfaces via tethering molecules, such as pro-
teins or specific lipids, that are anchored to the mem-
brane. In the pyrenoid of the model alga Chlamydomonas
reinhardtii, for example, pyrenoid-traversing membranes
feature tethers like RBMP1, RBMP2, and SAGA1, which
directly bind to Rubisco [6, 7]. These tether proteins are
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important for the structure and function of the pyrenoid
condensate. Since membranes are typically fluid, tethers
such as these are likely to be mobile within the mem-
brane. Here, we seek to address the general question of
how mobile tethers affect the condensate-membrane in-
teraction and wetting.
In classical wetting theory, the contact angle θ is de-

termined by the force balance at the three-phase junc-
tion through the Young-Dupré equation [8], which re-
lates θ to the difference of surface tensions (Fig. 1A). In
the presence of mobile tethers, however, favorable tether-
condensate interactions enrich tethers within a conden-
sate that wets the membrane (Fig. 1A), thereby creating
a surface with inhomogeneous wetting properties. Specif-
ically, tethers reduce the surface tension with both the
dense and dilute phases, but differentially affect the dense
phase more. Thus, tethers affect both the equilibrium
contact angle and the nonequilibrium relaxation dynam-
ics as a droplet wets a membrane. However, it has not
been clear to what extent tethers can control wetting
properties.
To address this question, we construct a general theo-

retical framework that describes the densities of tethers
and condensates with phase fields ψ and ϕ, respectively.
A high (lower) value of ϕ corresponds to a condensate
dense (dilute) phase. The interactions are captured by a
total free energy

βF =cψ,0

∫
dA

[
fψ(ψ) +

λψ
2
(∇ψ)2 − E(ψ, ϕ|surf)

]
+ cϕ,0

∫
dV

[
fϕ(ϕ) +

λϕ
2
(∇ϕ)2

]
,

(1)

where the first integral is over the membrane area,
and the second integral is over the bulk volume. En-
ergy is measured in units of β−1 = kBT . cψ,0 and
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cϕ,0 are reference concentrations for the tether and
condensate so that the free energy densities are non-
dimensionalized: E(ψ, ϕ|surf) captures both condensate-
tether and condensate-surface interactions; fψ(ψ) and
fϕ(ϕ) are the free energy densities of tethers and con-
densates respectively; λψ and λϕ are constants associated
with interface energies.

The model encompasses a large class of systems and
interactions by allowing the free energy densities fψ(ψ),
fϕ(ϕ), and the interaction energy E(ψ, ϕ|surf) to take any
form. By minimizing the free energy in Eq. 1, we ob-
tain the equilibrium concentration profile, from which the
contact angle θ can be measured (Fig. 1B). To study the
dynamics of wetting, we can further prescribe conserved
(model B) dynamics [9]:

∂tψ = ∇ · (Mψ∇µψ), ∂tϕ = ∇ · (Mϕ∇µϕ), (2)

where Mψ and Mϕ are mobility coefficients, and µψ =
δF/δψ and µϕ = δF/δϕ are the chemical potentials of
the tethers and condensate, respectively.

To illustrate the physical picture, we study a minimal
scenario of tether-mediated wetting. We consider a linear
interaction energy E(ψ, ϕ) = (h0 + h1ψ)ϕ, where h0 and
h1 describe condensate-membrane and condensate-tether
interactions, respectively. We use Flory-Huggins free en-
ergies for self-energies fξ(ξ) = ξ ln ξ + (1− ξ) ln(1− ξ) +
χξξ(1− ξ), with ξ ∈ {ψ, ϕ} representing the area or vol-
ume fraction of tether and condensate, respectively [10].
We set the units of free energy densities via cψ,0kBT = 1
and cϕ,0kBT = 1. Further assuming non-self-interacting
mobile tethers (χψ = 0, λψ = 0), we arrive at a mini-
mal model for interrogating how tethers affect conden-
sate wetting. However, we emphasize that the reported
qualitative behaviors are generic and not sensitive to the
specific choice of the functions for free energy densities
and condensate-tether interaction energy.

Phase separation creates dense and dilute phases in the
bulk, with binodal concentrations ϕl and ϕg (as measured
in volume fractions), respectively. The concentration dif-
ference ∆ϕ = ϕl − ϕg drives the attraction of tethers to
the condensate, resulting in a volume fraction ψl in the
dense phase, which is higher than that in the dilute phase
ψg (Fig. 1A). This partition of tethers reaches equilib-
rium when chemical potentials are balanced: µψ,l = µψ,g,
where µψ,∗ = δF/δψ∗ for ∗ ∈ {l, g}, which leads to (see
SI Appendix for details)

ψl =
ψge

h1∆ϕ

1 + ψg(eh1∆ϕ − 1)
, (3)

where we have approximated the condensate concentra-
tions at the surface with the binodal concentrations. This
agrees well with numerical simulations across a wide
range of ψg, for both repelling (h0 < 0) or attracting
(h0 > 0) interactions between the bare membrane and
the condensate (Fig. 1C).
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FIG. 1. Tether-mediated condensate wetting of membranes.
(A) Illustration of a biomolecular condensate (yellow) inter-
acting with tether molecules (black) to wet a membrane (pur-
ple). The interaction creates a localized enrichment of tethers
around the condensate, surrounded by a lower background
concentration of tethers. s, l, and g represent membrane
(“solid”), dense phase (“liquid”), and dilute phase (“gas”).
The contact angle θ is given by force balance at the three-
phase junction: σlg cos θ = σsg − σsl, where σ represents sur-
face tensions. (B) A typical equilibrium concentration profile
obtained from numerical simulations. The condensate field ϕ
(top) and tether field ψ (bottom) are plotted in cylindrical
coordinates (r, z) with axial symmetry. The thick black line
indicates the membrane at z = 0. The black dashed curve
a spherical cap fit to the interface contour. (C) Condensate-
enriched tether concentration ψl increases with bulk tether
concentration ψg, for different h0, consistent with theory
(solid curve, Eq. 3). (D) Contact angle cos θ as a function
of tether concentration ψg for different h0, in agreement with
theory (solid curves, Eq. 4). (E) cos θ (Eq. 4) as functions
of h1 and ψg. cos = ±1 represents wetting transitions to
complete and no wetting, respectively. In all simulations, ψ
follows Dirichlet boundary condition while ϕ follows no-flux
boundary condition. See SI Appendix for details and param-
eters.

The presence of tethers reduces both surface tensions
σsl = ln(1− ψl) − h0ϕl and σsg = ln(1− ψg) − h0ϕg.
However, the decrease in σsl is more substantial due to
tether enrichment in the condensate (ψl > ψg). This, in
turn, modifies the contact angle θ, which is determined
by force balance at the three-phase junction: σlg cos θ =
σsg − σsl. The modified contact angle is (see SI Appendix
for details)

cos θ =
σsg − σsl
σlg

=
∆σ0 +∆σ1

σlg
, (4)
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where ∆σ0 = h0∆ϕ is the surface tension difference in the
absence of tethers, and ∆σ1 = ln

[
1 + ψg(e

h1∆ϕ − 1)
]
is

the additional surface tension difference due to mobile
tethers. ∆σ1 increases monotonically with tether abun-
dance ψg and tether-condensate interaction h1. Indeed,
numerical simulations find the contact angle in simula-
tions to be in excellent agreement with Eq. 4 (Fig. 1D,
solid curves). Therefore, an attractive interaction due to
mobile tethers can modulate wetting over a wide range
of contact angles.

Wetting transitions occur at cos θ = 1, when a droplet
completely wets the membrane, and at cos θ = −1, when
a droplet detaches from the membrane (non-wetting).
Tethers can induce transitions between these wetting
regimes: For a repelling membrane that is initially in the
non-wetting regime (h0 < −σlg/∆ϕ), both partial wet-
ting [cos θ ∈ (−1, 1)] and complete wetting (cos θ = 1)
regimes can be achieved via a high enough density of at-
tractive tethers (Fig. 1E). To reach complete wetting, the

critical density of tethers required is ψg,c =
eσlg−h0∆ϕ−1
eh1∆ϕ−1

,
which must stay below 1 since ψ is defined in terms of
volume fractions. Since ψg,c vanishes in the limit of large
h1, a finite number of tethers is sufficient to access all
three wetting regimes as long as the tether-condensate
attraction is strong enough.

For real tether molecules, how much binding en-
ergy is required to make a significant difference in
wetting properties? Typically, the membrane would
be slightly repulsive for polymer condensates because
being close to the membrane reduces the conforma-
tional entropy of the polymers, leading to an esti-
mated ∆σ0 ∼ −10−1kBT/nm

2 [11]. In aqueous buffer,
the condensate surface tension is of the same order
σlg ∼ 10−1kBT/nm

2 [12]. Thus, to drive wetting,
tethers must reduce surface tension by the same or-
der ∆σ1 ∼ 10−1kBT/nm

2. A typical tether density of
ng ∼ 10−2nm2 [13] yields a required binding energy of
ϵ ≈ O(1)kBT (see SI Appendix for details). Despite be-
ing a rough estimate, these calculations show that a rea-
sonably modest per-tether binding energy (a few kBT )
could modulate wetting transitions.

Thus far, we have focused on the equilibrium mor-
phologies due to tether-mediated wetting. But do teth-
ers affect the dynamics of condensate formation and lo-
calization? In the alga C. reinhardtii, for example, the
pyrenoid condensate dissolves and reforms every cell di-
vision, and the new pyrenoid centers around a reticu-
lated region where many tubules meet. Hence, we hy-
pothesize that mobile tethers may facilitate condensate
localization by enrichment in the reticulated region. To
illustrate this mechanism, we study a two-dimensional
system which is bounded by membranes on the left and
bottom sides and closed on the other two (Fig. 2). The
bottom-left corner is favorable for the condensate since it
can interact with the largest amount of membrane area
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FIG. 2. (A–B) Dynamics of condensate localization for tether
mobility Mψ = 1.0 (A) and Mψ = 0.1 (B). The simula-
tion domain is a 2D system (x, y) with membranes on the
left and bottom boundaries (indicated by thick black lines).
Different colors indicate concentration profiles at different
times (legend), with the condensate ϕ represented by inter-
face contours and the tether ψ shown in the left and bottom
insets. Inset in (A) shows the final equilibrium profile for
ϕ(x, y). The tether density at the boundaries is ψg = 0.05.
The overall ⟨ϕ⟩ is conserved due to no-flux boundary condi-
tions. (C) Condensate location as quantified by the average

distance ⟨r⟩ =
∫
δϕ(x, y)

√
x2 + y2 dxdy /

∫
δϕ(x, y) dxdy,

where δϕ = ϕ− ϕg. See SI Appendix for details.

(and therefore tethers), analogous to the reticulated re-
gion in the pyrenoid. Initially, the condensate coats part
of the membrane, and its bulk concentration is between
binodal and spinodal concentrations. If tethers have a
high mobility, they quickly enrich in the condensate and
help it localize to the corner (Fig. 2A). In contrast, if the
tether mobility is low, the condensate first breaks up into
smaller droplets, albeit eventually localizing to the cor-
ner through a coarsening process (Fig. 2B). Even though
both reach the same equilibrium state, the latter process
is much slower (Fig. 2C). Thus, by helping the conden-
sate to optimize its membrane contacts, mobile tethers
can facilitate coarsening and localization with respect to
membrane structures, such as the tubules traversing the
pyrenoid.
In summary, mobile tether molecules play an impor-

tant role in mediating interactions between biomolec-
ular condensates and membrane structures. Here, we
developed a general theoretical framework to elucidate
how mobile tethers affect both equilibrium and dynam-
ical aspects of condensate wetting, which is relevant for
a wide range of biological systems, including the algal
pyrenoid [6, 7]. It will be important to further test the
theory experimentally, for example, in systems such as
supported lipid bilayers (e.g., fluorescently tagged teth-
ers of known condensate affinities). More broadly, this
framework can be extended to include effects such as
membrane deformation and hydrodynamic coupling, as
well as active processes, such as post-translational modi-
fication upon wetting. Overall, our framework paves the
way for the study of how mobile-tether-mediated inter-
actions affect condensate morphology and dynamics.
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I. THEORETICAL FRAMEWORK

As discussed in the main text, we consider a system where (three-dimensional) biomolecular condensates can interact
with a (two-dimensional) membrane. The total free energy reads:

βF = cψ,0

∫
dA

[
fψ(ψ) +

λψ
2
(∇ψ)2 − E(ψ, ϕ|surf)

]
+ cϕ,0

∫
dV

[
fϕ(ϕ) +

λϕ
2
(∇ϕ)2

]
, (S1)

where ϕ is the condensate density field, ψ is the tether density field. The first integral is over the membrane area,
while the second integral is over the bulk volume. fϕ(ϕ) and fψ(ψ) are the free energy densities of the condensate and
tethers, respectively; E(ψ, ϕ|surf) describes the interaction energy between the condensate and the tether/membrane,
with ϕ|surf denoting the condensate density at the membrane surface. λψ and λϕ are related to the line/surface
tensions. The free energy is measured in units of β−1 = kBT . The free energy densities (integrands in Eq. S1) are
non-dimensionalized by the factor of β and reference concentrations cψ,0 and cϕ,0, for the tether and the condensate,
respectively [1]. For qualitative analysis and for the sake of simplicity, we set cψ,0kBT = 1 and cϕ,0kBT = 1; this does
not affect the qualitative results but must be revisited when estimating the energy scales for real tethers (Sec. II).

To minimize the free energy, we prescribe the following gradient (model-B) dynamics for both the tethers and
condensate [2]:

∂tψ = ∇ · (Mψ∇µψ), ∂tϕ = ∇ · (Mϕ∇µϕ), (S2)

where Mψ and Mϕ are the mobility coefficients, and µψ = δF/δψ and µϕ = δF/δϕ are the chemical potentials of the
tethers and condensate, respectively. The condensate obeys no-flux boundary condition at the membrane surface:

∂zµϕ|z=0 = 0, (S3)

where z is the normal vector pointing out of the membrane1. Additionally, the bulk-surface interaction gives the
following wetting boundary condition:

λϕ∂zϕ|z=0 = −∂ϕE(ψ, ϕ|z=0), (S4)

∗ These authors contributed equally to this work.
† andrej@princeton.edu
‡ wingreen@princeton.edu
1 From now on, we will use · · · |z=0 and · · · |surf interchangeably to denote the values at the membrane surface.
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which reflects a local change in condensate concentration near the membrane surface due to the condensate’s interac-
tion with the membrane and tethers.

While the model can be used to describe a large class of systems by allowing the free energy densities fϕ(ϕ) and
fψ(ψ) and the interaction energy E(ψ, ϕ|surf) to take different forms, we will focus on a minimal model to illustrate
the essential physical picture.

A. A minimal model for tether-mediated wetting

For the sake of simplicity, we use Flory-Huggins free energy densities for both the condensate and the tethers

fψ(ψ) = ψ lnψ + (1− ψ) ln(1− ψ) + χψψ(1− ψ), (S5)

fϕ(ϕ) = ϕ lnϕ+ (1− ϕ) ln(1− ϕ) + χϕϕ(1− ϕ), (S6)

with ψ and ϕ denoting the area or volume fraction of tether and condensate, respectively. χψ and χϕ are the
Flory-Huggins interaction parameters for the tether and the condensate, respectively.

We further assume a linear interaction energy (non-dimensionalized in the same way as fψ)

E(ψ, ϕ) = (h0 + h1ψ)ϕ, (S7)

where h0 and h1 describe condensate-membrane and condensate-tether interactions, respectively. The chemical po-
tentials are given by:

µψ =
δF

δψ
= ln

ψ

1− ψ
+ χψ(1− 2ψ)− λψ∇2ψ − h1ϕ|z=0, (S8)

µϕ =
δF

δϕ
= ln

ϕ

1− ϕ
+ χϕ(1− 2ϕ)− λϕ∇2ϕ. (S9)

Further assuming that tethers do not interact with each other and only interact with the condensate, we have χψ = 0
and λψ = 0. The tether chemical potential then simplifies to

µψ = ln
ψ

1− ψ
− h1ϕ|z=0. (S10)

Let ϕl and ϕg denote condensate densities in the dense (liquid) phase and the dilute (gas) phase, respectively. The
corresponding tether densities in the dense and dilute phases are denoted as ψl and ψg. They are related to each
other through chemical potential balance:

µψ,l = µψ,g ⇒ ln
ψl

1− ψl
− h1ϕl|z=0 = ln

ψg

1− ψg
− h1ϕg|z=0. (S11)

Approximating the surface density ϕ|z=0 with the bulk binodal values2, we have

ln
ψl

1− ψl
= ln

ψg

1− ψg
+ h1∆ϕ, (S12)

where ∆ϕ = ϕl|z=0 − ϕg|z=0 ≈ ϕl − ϕg is the difference between binodal concentrations. Solving for ψl:

ψl =
ψge

h1∆ϕ

1 + ψg(eh1∆ϕ − 1)
, (S13)

which produces Eq. (3) in the main text.
The contact angle θ is given by force balance at the three-phase junction:

σlg cos θ = σsg − σsl ≡ ∆σ, (S14)

2 The correction due to this approximation is O
(
h2
0, h

2
1

)
, which, as shown below, is a higher-order term.
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where σ represents surface tensions. σlg is the surface tension between the dense and dilute phases in 3D and is
independent of the tether concentration. The surface tension with the membrane σs∗, which depends on the tether
density ψ, is given by computing the excess free energy (per unit area):

σs∗ = fψ(ψ∗) + E(ψ∗, ϕ∗|z=0)− µψ,∗ψ∗ +∆fexcess(ψ∗, ϕ∗) ≡ σ̃s∗ +∆fexcess(ψ∗, ϕ∗), (S15)

where ∗ ∈ {l, g} denotes the dense (“liquid”) or dilute (“gas”) phase, respectively. µψ,∗ = ln ψ∗
1−ψ∗

− h1ϕ∗|z=0 is the

tether chemical potential. ∆fexcess(ψ∗, ϕ∗) is defined below and will prove to be higher order in h0 and h1. We define
σ̃s∗ to be the sum of the first three terms, which is given by

σ̃s∗ =fψ(ψ∗) + E(ψ∗, ϕ∗|z=0)− µψ,∗ψ∗ (S16)

=ψ∗ lnψ∗ + (1− ψ∗) ln(1− ψ∗)− (h0 + h1ψ∗)ϕ∗ − ψ∗

(
ln

ψ∗

1− ψ∗
− h1ϕ∗

)
(S17)

= ln(1− ψ∗)− h0ϕ∗. (S18)

The surface tension difference due to these terms reads

∆σ̃ ≡ σ̃sg − σ̃sl = h0(ϕl − ϕg) + ln
1− ψg

1− ψl
= h0(ϕl − ϕg) + ln

[
1 + ψg(e

h1∆ϕ − 1)
]
≡ ∆σ0 +∆σ1, (S19)

where ∆σ0 = h0(ϕl − ϕg) = h0∆ϕ is the surface tension difference in the absence of tethers, and ∆σ1 =
ln

[
1 + ψg(e

h1∆ϕ − 1)
]
is the additional surface tension difference due to mobile tethers. We have substituted ψl

with Eq. S13. Note that to the leading order, we have ∆σ̃ = O(h0, h1).
∆fexcess(ψ∗, ϕ∗|z=0) is the excess free energy density due to a boundary layer of condensates at the membrane

surface, where the condensate concentration profile ϕ(z) deviates from the binodal:

∆fexcess(ψ∗, ϕ∗) =

∫
dz1

[
gϕ(ϕ∗(z1)) +

λϕ
2
(∂zϕ∗(z1))

2 − gϕ(ϕ∗)

]
, (S20)

where ϕ∗ denotes the binodal concentration, and gϕ(ϕ) = fϕ(ϕ) − µϕϕ is the Gibbs free energy of the condensate.
The concentration profile ϕ∗(z1) is the solution to the following boundary value problem:

∂zµϕ(z1) = 0, z1 > 0, (S21)

λϕ∂zϕ∗(z1) = −(h0 + h1ψ∗), z1 = 0, (S22)

lim
z1→∞

ϕ∗(z1) = ϕ∗. (S23)

In practice, we find that the excess free energy density is negligible compared to the other terms. This can be explained
by the following scaling argument: To the leading order in δϕ∗(z) = ϕ∗(z)− ϕ∗, the excess free energy is

∆fexcess ∼
∆z

2
·
[
λϕδϕ

′
∗(z)

2 + g′′(ϕ)δϕ∗(z)
2
]
= O(δϕ2∗), (S24)

where ∆z is the boundary layer thickness, and we have used g′(ϕ) = 0 at the binodal concentration. From the wetting
condition [Eq. S22], we find δϕ∗ = O(h0, h1). Hence, the excess free energy becomes quadratic in the interaction
parameters:

∆fexcess = O
(
h20, h

2
1

)
, (S25)

which is a higher-order term compared to ∆σ̃.
Putting everything together:

cos θ =
σsg − σsl
σlg

≈ ∆σ̃

σlg
=

∆σ0 +∆σ1
σlg

=
h0(ϕl − ϕg) + ln

[
1 + ψg(e

h1∆ϕ − 1)
]

σlg
, (S26)

which produces Eq. (4) in the main text.
To achieve complete wetting (cos θ = 1), the critical tether density ψg,c is given by

σlg = h0∆ϕ+ ln
[
1 + ψg,c(e

h1∆ϕ − 1)
]
⇒ ψg,c =

eσlg−h0∆ϕ − 1

eh1∆ϕ − 1
. (S27)



S4

II. ESTIMATING THE TETHER BINDING ENERGY REQUIRED TO DRIVE WETTING
TRANSITION

Here, we estimate the value of ∆σ0, which is the dilute/dense phase surface tension difference due to the condensate-
membrane interaction. Typically, the membrane would be slightly repulsive for polymer condensates because being
close to the membrane reduces the conformational entropy of the polymers. Thus, we can estimate the magnitude
of this effect by considering polymer “blobs” close to the membrane. Each “blob” would contribute 1kBT , and the
number of polymer “blobs” per unit area could be estimated by 1/R2

g with Rg being the radius of gyration. For an

IDP of length ∼ 100 a.a., we estimate Rg ∼ 3nm [3], and therefore 1/R2
g ∼ O(10−1)nm2. Thus, the surface tension

due to entropic repulsion is of the order ∆σ0 ∼ −O(10−1)kBT/nm
2.

On the other hand, previous micropipette aspiration found that the condensate surface tension σlg is at most
O(1)mN/m, or equivalently O(10−1)kBT/nm

2. Thus, to achieve complete wetting, the additional surface tension
difference due to tethers must also reach ∆σ1 = σlg −∆σ0 ∼ O(10−1)kBT/nm

2.
To estimate the binding energy relevant for real tethers, we recall that the surface tension was renormalized by

cψ,0kBT , with a close-packed tether density set by cψ,0. Thus, in the limit of dilute tethers ψg = ng/cψ,0 ≪ 1, where
ng is the (dimensional) tether density in contact with the dilute phase, we have

∆σ1
kBT

= cψ,0 ln
[
1 + ψg(e

h1∆ϕ − 1)
]
≈ cψ,0ψg(e

h1∆ϕ − 1) = ng(e
ϵ − 1), (S28)

where ng ∼ 10−2nm2 [4] is the tether number density, and ϵ = h1∆ϕ is the energy reduction per tether when inside
the condensate, measured in units of kBT . This lead to

ϵ = ln

(
1 +

∆σ1
ngkBT

)
∼ ln [1 +O(10)] ∼ O(1) (kBT ), (S29)

which suggests that a binding energy of a few kBT per tether is relevant for modulating the equilibrium wetting
properties.

III. DETAILS OF NUMERICAL SIMULATIONS

To solve the equations of motion (Eq. S2) for the condensate and tethers, we use a finite-flux numerical scheme with
first-order forward Euler time-stepping for time evolution. The condensate field ϕ obeys no-flux boundary conditions
at all boundaries in addition to wetting boundary conditions at membrane interfaces. The tether field ψ obeys
Dirichlet boundary conditions with fixed bulk tether concentration ψg.

For Fig. 1, the simulation was performed in cylindrical coordinates, with spatial discretization rn = nrmax

N , zm =
mzmax

M , where rmax = 60 and zmax = 40 set the system size and N = M = 128 set the spatial resolution. The
system was evolved to its equilibrium state. The contact angle is measured by fitting the contour to a spherical cap
R2 = r2 + (z − z0)

2, which gives cos θ = −z0/R0. The parameters are: χϕ = 2.5, λϕ = 1, χψ = 0, λψ = 0; h1 = 1 for
(B)–(D); ψg = 0.02 and h0 = 0 for (B); h0 = −0.2 for (E).

For Fig. 2, the simulation was performed in 2D planar coordinates, with spatial discretization xn = nxmax

N , ym =
mymax

M with xmax = ymax = 30 and N =M = 64. The parameters are: h0 = −0.2, h1 = 2, χϕ = 2.5, λϕ = 1, χψ = 0,
λψ = 0. Tether concentration is fixed at the boundary by Dirichlet boundary condition ψg = 0.05.

To quantify how fast the droplet reaches its equilibrium configuration at the lower-left corner where the two

membranes meet, we defined an average distance ⟨r⟩ =
∫
δϕ(x, y)

√
x2 + y2 dxdy /

∫
δϕ(x, y) dxdy, where δϕ = ϕ−ϕg

is the condensate concentration subtracted by the dilute phase.
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