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Abstract:

Chromosomal topology and transcription are tightly coupled, yet the quantitative impact
of topological constraints on transcription, supercoiling, and the potential coupling
between neighboring genes in vivo remains unclear. In this work, we constructed
synthetic chromosomal domains in Escherichia coli that contained two genes inside a
topology-controllable domain and a third gene outside. Using three-color single-
molecule fluorescence in situ hybridization (smFISH), we measured transcription output
from the three genes in individual cells under conditions in which gene orientation,
domain formation state, and global chromosomal supercoiling density were varied. We
found that topological domain formation repressed transcription, diminished gene
orientation-dependent differences in transcription, and modulated the supercoiling
sensitivity of genes located both within and near the domain. Relaxing global negative
supercoiling through gyrase inhibition broadly repressed transcription; increasing global
negative supercoiling level through topoisomerase | inhibition repressed highly
expressed genes, while activating lowly expressed ones. Besides single-gene effects,
we also observed an intrinsic coupling between neighboring genes with a non-
monotonic dependence on the underlying supercoiling state, which shifted with domain
topology and gene syntax. Our results establish chromosome topology as a major

regulator of both transcription levels and the coupling between adjacent genes.
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Introduction

Classic transcription regulation holds that the binding of transcription factors
(TFs) to gene regulatory sequences modulates the transcriptional activity of RNA
polymerase (RNAP)."? While the protein-based transcription regulation mechanism
remains central, recent studies have suggested that DNA supercoiling—the over- or
under-winding of the double helix—coupled with the formation of chromosomal
topologically isolated domains, could strongly influence transcription.®*” The DNA
mechanics-based influence thus adds another layer to transcription regulation in a

complex cellular environment.

Previous studies have established that transcription and DNA supercoiling are
tightly coupled.*®®° The twin-domain model describes that transcription generates
positive supercoiling downstream and negative supercoils upstream of RNAP due to the
rotational drag of the elongating transcription complex.’®*! These supercoils can spread
over more than 2 kb along the DNA'? before they are enzymatically removed by
topoisomerases.’*** In E. coli, gyrase removes positive supercoils by catalyzing
double-stranded (ds) DNA breakage and passage and introducing negative
supercoils™*®; Topo | relaxes negative supercoils by catalyzing single-stranded (ss)
DNA breakage and passage.'”*® The actions of the two enzymes maintain the average,
global negative supercoiling density of the chromosome at ~ -0.06 in exponentially

growing cells.**?°

When accumulated, however, positive supercoils downstream of RNAP impede
both transcription initiation and elongation, eventually stalling RNAP unless topological
stress is relieved.?* Conversely, negative supercoils upstream of the transcription
machinery can facilitate promoter opening for RNAP binding but also prevent RNAP
from escaping the promoter or continuing elongation when the level is too high.?>* As
such, the interplay between transcription and DNA supercoils can lead to complex
transcriptional behaviors, generating new dynamics and phenomena. For example, the
successive dissipation and accumulation of supercoils have been proposed to cause
transcriptional bursting — short transcription-on periods of rapid, successive production

of multiple mMRNA molecules when the torsional stress is released, interspersed by
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transcription-off periods when the torsional stress accumulates.?*? Burstiness in gene
expression generates phenotypic heterogeneity in mRNA and protein copy numbers

even among genetically identical cells.?®

Most interestingly, supercoils generated by one transcribing RNAP molecule can
diffuse and influence neighboring RNAP molecules on the same or different genes,
effectively coupling transcription units through shared DNA torsion.*? Depending on the
transcription orientation (codirectional, divergent, or convergent), supercoiling can
produce either cooperative or antagonistic effects on adjacent RNAP molecules and
promoters.**?"2° Modeling studies have shown that the annihilation of supercoiling
between elongating complexes can produce emergent cooperative behavior of co-
transcribing RNAP molecules, linking DNA torsional mechanics to collective

transcriptional  dynamics.?*%%~%

These phenomena highlight that chromosomal
supercoiling is not a mere byproduct of transcription but can act as a regulatory factor:
the directionality of genes and their chromosomal context, collectively termed gene

27,28

syntax“"“°, can have substantial effects on transcription.

The impact of DNA supercoiling is especially relevant in the context of bacterial
chromosomal organization, including large chromosomal interaction domains on the
order of 100 kb* and small topological domains on the order of 10-20 kb’. Because
supercoils cannot diffuse across topological domain boundaries, the torsional stress
they generate is shared by all genes within a domain. As such, chromosomal
topological domain formation could isolate genes from the global chromosomal
environment and alter their coupling and/or responses to perturbations via DNA
mechanics, independent of protein-based TF regulation.*?*3*** Similar mechanisms
could also be at play in eukaryotic chromosomes, where topological domains on the
order of ~ 200 kb to 2 Mb isolate and constrain supercoils, thereby impacting gene
regulation within the domain differentially from genes outside the domain.**~*® This DNA
mechanics-based transcription regulation is possibly a fundamental, universal
mechanism for gene regulation, predating the more intricate, protein-based gene

regulation that evolved over time, as supported by a recent comparative study.*
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Despite growing interest in supercoil-mediated transcription regulation and

23,27,28,30,32,40-44 12,21,28,35,45-48 .
| | studies,

several pioneering theoretica and experimenta
direct, quantitative, and systematic measurements of how topological domain formation
impacts the transcription of multiple genes in the chromosomal and cellular context are
not available. Here, we address this gap by engineering a set of synthetic, topology-
controllable chromosomal domains in E. coli, each containing three genes arranged in
different orientations. Using single-molecule fluorescence in-situ hybridization
(smFISH), we measured the transcriptional activity of each gene while controlling
domain topology and modulating supercoiling with topoisomerase inhibitors. This
synthetic-biology approach provides a precise, controllable in vivo system for probing

the roles of topological domain formation in gene regulation.

Our approach revealed that topological domain formation profoundly affects gene
expression. It represses transcription, modulates genes’ responses to supercoils, and,
most interestingly, modifies the coupling between neighboring genes in a syntax-
dependent manner and to different extents. Positive supercoils are essentially
repressive for transcription, while negative supercoils can be activating for lowly
expressed genes and repressive for highly expressed genes. Furthermore, we
developed a minimal stochastic model to capture the quantitative coupling between
different gene pairs and demonstrated that supercoiling can couple neighboring genes
in a non-monotonic manner. These results reveal that chromosomal organization can
directly shape transcription, independent of protein regulators. Our results provide a
new framework for examining how chromosome architecture influences the emergence
of transcriptional behaviors through supercoiling in a complex cellular environment.
More broadly, these results highlight the impact of mechanical coupling between genes
on expression, offering guidance for designing robust gene expression systems within

their native chromosomal contexts.
Results

Design and construction of a controllable chromosomal topological domain in E.

coli
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To control topological domain formation at will in an otherwise identical
chromosomal background and to minimize potential complications caused by native
interactions, we constructed a synthetic domain of ~ 6 kb devoid of any known TF-
binding sequences (Fig. 1A, top left). The synthetic domain contained tandem repeats
of the left and right operator sites of the A repressor ClI (3x0_123 and 2xOr123) flanking
two genes (G1, ~ 3.4 kb, and G2, ~ 1.7 kb) of identical synthetic constitutive promoters
(lacUV5*) and arranged codirectionally (abbreviated as codir hereafter for simplicity).
Each gene was terminated by strong ribosomal RNA (rrn) transcription terminators (rrnB
T1 + rrnD for G1 and rrnD for G2). A third gene (G3, ~ 4 kb) with a synthetic constitutive
promoter (EM7°%) was placed outside Or123 and terminated by the endogenous
chromosomal terminator once integrated. The construct's dimensions are listed in Table
S1.

We integrated the domain into the E. coli chromosome at the lacZ operon
location using a landing pad approach. We chose the lac operon location because it is
in the E. coli right unstructured chromosomal macrodomain, which has minimal intra-
macrodomain chromosomal interactions when compared to other structured
macrodomains.®> We then grew cells in minimal medium (M9) at 30 °C and
constitutively expressed the A repressor ClI from a low-copy plasmid in the cell (NY50,
Table S2). The binding and octamerization of the A repressor Cl at the operator sites
loop the intervening DNA, forming a topologically constrained domain of 6,082 bp that
encompasses G1 and G2 but not G3 (Fig. 1A, top right). As a control for the unlooped
condition, we expressed an otherwise identical plasmid without the A repressor cl gene
in the same strain background, which does not form the synthetic topological domain
(NY51, Table S2).

We previously used this method to investigate the effect of chromosomal DNA
looping on Cl-mediated transcription regulation.®® We verified that the expression of Cl
indeed led to the looping of the intervening DNA sequences in live E. coli cells using
single-molecule imaging.”® Furthermore, using purified Cl and the corresponding DNA

construct in an in vitro plasmid DNA nicking topology assay>**°

, we verified that loop
formation via binding and oligomerization of CI retained supercoils in the topologically

constrained segment of the plasmid (Fig. S1). Therefore, the synthetic platform with or
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without CI expression enables us to control the formation of the topological domain and

subsequently examine its impact on the transcription of the three genes.
Three-color smFISH measurements reveal differential basal transcription levels

To measure the transcription activity of all three genes simultaneously in the
same cells, we employed three-color single-molecule fluorescence in situ hybridization
(smFISH)*® and quantified the corresponding RNA copy numbers for G1, G2, and G3 in
exponentially growing cells based on the integrated fluorescence intensity of individual
SmFISH spots in cells (Fig. 1B, STAR Methods, Table S3). Under the unlooped
condition (without CI expression, strain NY51), the codir construct expressed on
average 3.6 = 0.1, 2.6 £ 0.1, and 5.6 +* 0.1 transcripts/cell for G1, G2, and G3
respectively (u £ sem, mean * standard error of the mean, N = 2,791 cells from 8
independent replicates; statistical significance assessed by two-sample Kolmogorov-
Smirnov test here and hereafter unless otherwise noted, Fig. 1C, light gray bars, Tables
S4, S5). These expression levels represent the basal expression of the three genes in
the native E. coli chromosomal environment. Note that although G1 and G2 have
identical synthetic promoters, their expression levels differed significantly, suggesting a

potential effect due to the gene syntax.

Topological domain formation represses transcription and diminishes gene

syntax effect in a codirectional construct

We next investigated the effect of chromosomal topological domain formation by
expressing CI in the same strain background and compared transcription of the three
genes (looped, strain NY50) with that of the unlooped strain (NY51) under identical
growth conditions. Interestingly, domain formation repressed transcription and
diminished the gene syntax effect as it reduced the transcription of G1 and G2 to similar
levels at ~ 1.7 + 0.1 RNA/cell, respectively (v + sem, N = 2523 cells from 7 independent
replicates, Fig. 1C, D, dark gray bars, Table S4). The reduced transcription is unlikely to
have resulted from the direct repression by Cl-binding because the G1 promoter is 229
bp away from the nearest O, operator, and G2's promoter is in the middle of the
domain, ~ 2-4 kb away from CI's binding sites (Table S1). Furthermore, we have

previously shown that CI binds to its operator sites specifically and does not spread on
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the chromosome at our low, constitutive expression level.>® Therefore, these
observations suggest that the formation of the topological domain represses

transcription, independent of any known protein factors.

Notably, G3, which lies outside the loop, also exhibited a substantial reduction in
transcription (3.0 £ 0.1, y £ sem, N = 2523 cells from 7 independent replicates, Fig. 1C,
D, Table S4). As the G3 promoter is even further away from the nearest Og123 operator
(595 bp), this observation suggests that the creation of a topological boundary can
affect nearby genes over long distances, consistent with what would be expected from

the DNA-mediated supercoiling effect.?*°

Topological domain formation represses transcription and diminishes gene

syntax effect in a divergent construct

To investigate whether the observed effects are dependent on gene orientation in
the domain, we constructed a divergent (div) domain, in which G1 is reversed from its
orientation in the codir construct (Fig. 1A, bottom left, Table S1). Under the unlooped
condition (Strain NY92, Table S2), the three genes were, in general, expressed
differentially and at lower levels than they were in the codir construct (2.7 £ 0.1, 1.3 £
0.1, and 3.5 + 0.1 transcripts/cell, for G1, G2, and G3 respectively, u + sem, N = 2,791
cells from 7 independent replicates, Fig. 1E, light gray bars with dashed outlines, Table
S4). Given the identical promoter and gene sequences of the three genes between the
div and codir constructs, this result suggests that relative gene orientation to each other

impacts their expression levels in the native chromosomal environment.

Next, we measured transcriptional outputs of the div construct under the looped
condition (Fig. 1A, bottom right; Strain NY91; Table S2). We found that looping also
reduced G1, G2, and G3 expression significantly (1.2 £ 0.1, 1.0 £ 0.1, and 1.3 £ 0.1
transcripts/cell, respectively, u £ sem, N = 2,051 cells from 7 independent replicates,
Fig. 1E, F, dark bars with dashed outlines, Table S4) in a similar fashion compared to
that in the codir construct. In particular, G1 and G2 had a large difference in their
expression levels under the unlooped condition but decreased to comparable levels
upon domain formation (Fig. 1E, compare the light- and dark-gray bars of G1 or G2).

These observations suggest that topological confinement exerts a general repressive
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effect on transcription and diminishes the gene-syntax effect, regardless of gene

orientation within the domain.
Gyrase inhibition represses transcription

We reason that the above effects are likely mediated by accumulated supercoils,
which can propagate along the DNA and be constrained by topological barriers. To
probe this possibility, we assessed the impact of perturbing the global chromosomal
negative supercoiling state by treating cells with a gyrase inhibitor, novobiocin (Fig. 2A).
Novobiocin inhibits gyrase activity by abolishing ATP binding to the ATPase domain in

the GyrB subunit®”°® and lowers the global negative supercoiling density (45>0).*%%

We treated cells with 300 pg mi™ (489.7 yM) novobiocin for 15 minutes before
fixation under the unlooped condition. We previously used this treatment concentration
and duration to avoid dsDNA breaks.”® Interestingly, for both the codir and div
constructs (strains NY51 and NY92, respectively, Table S2), G1 and G2 were only
slightly affected (~ < 10% reduction compared to the untreated conditions, Fig. 2A,
Table S4). This observation suggests that, under this unlooped condition, gyrase
inhibition and the relative orientations of G1 and G2 have minimal effects on their
responses. In contrast, G3 expression was significantly reduced by 82 + 4%, (N = 2,673
cells from 8 independent replicates), and 66 + 4%, (N = 3,055 cells from 6 independent
replicates) for codir and div constructs, respectively (Fig. 2A, Table S4). As G3 has the
highest expression level under the untreated condition, is the longest gene in the
construct, and resides downstream of G2, it may experience the highest level of
accumulated positive supercoils among the three genes, hence requiring a higher level
of Gyrase activity to maintain its transcription. This possibility is also consistent with
previous observations that the accumulation of positive supercoils often represses

transcription of strong genes.®
Topological domain formation sensitizes genes to gyrase inhibition

We next examined how topological domain formation modifies gene responses to
gyrase inhibition. Surprisingly, under the looped condition (strains NY50 and NY91,
respectively, Table S2), we observed enhanced responses of G1 and G2 but essentially

unchanged responses of G3 (Fig. 2B). For example, G2 transcription was reduced by ~
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30% for both the codir and div constructs (Fig. 2B, N = 1,999 cells from 6 independent
replicates for codir and N = 2,301 cells from 6 independent replicates for div, Table S4),
up from a repression level of < 10% under the unlooped condition (compare with Fig.
2A G2 bars of the same styles). In contrast, G3 was repressed at comparable high
levels, regardless of whether the condition was looped or unlooped (Fig. 2A, B, G3
bars). Most interestingly, under the looped condition, novobiocin produced slight, but
apparently opposite effects on G1 transcription in the two constructs where G1 has
opposite orientations: it reduced G1 transcription by ~ 12% in the codir construct, but
increased G1 transcription by ~ 10% in the div construct (Fig. 2A, B, G1 bars). Note
that under the unlooped condition, novobiocin only had a slight effect on G1
transcription in both constructs (Fig. 2A). These observations suggest that topological
domain formation enhances the sensitivity of genes within the domain to gyrase
inhibition, likely due to the accumulation of local positive supercoils, and that this effect

depends on gene orientation.

Topoisomerase | inhibition alters transcription in a syntax-dependent manner

under the unlooped condition

Having examined the impact of inhibiting gyrase—which led to decreased
negative supercoiling densities (4o>0)—we next investigated how increased negative
supercoiling densities (40<0) affect transcription. Specifically, we shifted the global
chromosomal supercoiling state in the opposite direction by treating cells with a
Topoisomerase | inhibitor, seconeolitsine.®* Topoisomerase | relaxes negative
supercoiling, so its inhibition leads to a higher level of accumulated negative
supercoiling in the chromosome.®

We treated cells with 25 uM seconeolitsine for 15 minutes before fixation.®® In
codir cells, seconeolitsine reduced G1, G2, and G3 expression by 12 + 4%, 29 + 5%,
and 42 + 4%, respectively (N= 1,081 cells from 3 independent replicates, Fig. 2C, bars
with solid outlines, Table S4), indicating that for the codirectional arrangement, bias
toward both more and less negative supercoiling density repressed transcription.
However, treating the div construct with seconeolitsine under the unlooped condition

enhanced the transcription significantly for all three genes but to different extents (29 +
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4%, 92 £ 4 %, and 12 + 5% for G1, G2, and G3 respectively, N = 1,046 cells from 3
independent replicates, Fig. 2C, bars with dashed outlines, Table S4). These results
suggest that the gene syntax under the unlooped condition may significantly impact
individual gene expression and lead to drastically different responses to topoisomerase
| inhibition.

Topoisomerase | inhibition activates transcription under the looped condition

Next, we investigated how the three genes respond to Topo | inhibition under the
looped condition. Interestingly, treating cells with seconeolitsine under the looped
condition enhanced transcription for both the codir and div constructs; the expression of
G1, G2, and G3 were enhanced by 40 + 5%, 19 + 6%, and 23 = 6% (N= 618 cells from
3 independent replicates) respectively for the codir constructs, and 114 + 7%, 66 + 8%,
and 129 + 5%, respectively (N = 605 cells from 3 independent replicates) for the div
construct (Fig. 2D, Table S4). As Topo | inhibition leads to the accumulation of more
negative supercoils, these observations suggest that, under the looped condition,
accumulated negative supercoils activate transcription, in contrast to the effect of
accumulated positive supercoils when Gyrase was inhibited (compare Fig. 2B and D).
Note that G3, which is outside of the domain boundary, also responded differentially to
seconeolitsine under the unlooped and looped conditions, indicating an impact of

domain formation for genes near the boundary.
Supercoiling sensitivity depends on the basal transcription level

The differential, nonuniform responses of the three genes in the codir and div
constructs under the looped and unlooped conditions suggest that other factors, in
addition to gene orientation or topological domain formation, may impact the sensitivity
of gene transcription to supercoils. As transcription also generates supercoils, we
reasoned that genes with different transcription levels may be differentially sensitive to
topoisomerase inhibition. To examine this possibility, we calculated the percent change
in RNA copy number between drug-treated and untreated conditions across all
constructs, genes, and looping states, and plotted the percent change relative to the
mean RNA copy number in the untreated condition for each matched pair (Fig. 2E, F).
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For novobiocin-treated conditions (Fig. 2E), we observed a general repression
trend (percentage change < 0) regardless of the basal expression levels, with no
statistically significant dependence on the expression level or the looping state (pspearman
= -0.329, p = 0.3). The repression suggests that accumulated positive supercoiling
resulting from gyrase inhibition imposes a general transcriptional penalty, likely by
preventing transcription initiation or by stalling RNAP during elongation. In contrast,
seconeolitsine treatment produced a significant anti-correlated trend (pspearman = -0.811,
p = 0.002, Fig. 2F); genes with low expression levels showed higher levels of activation,
while genes with higher expression levels were generally repressed after seconeolitsine
treatment. This observation suggests that negative supercoils can be either activating or
repressive, depending on the initial transcriptional level. Hence, negative supercoils
may act as a homogenizing force, bringing genes with too low or too high expression

levels back into a nominal range.
An individual gene’s transcription level depends on its syntax

So far our experiments have shown that the transcription levels of the three
genes varied in a large range from ~ 0.4 copies per cell to ~ 5.6 copies per cell under
twelve different conditions (Table S4), each being a unique combination of three factors,
the construct orientation (codir or div), looping state (looped or unlooped), and drug
condition (untreated, +nov, or +scn). To assess the impact of each factor on the
transcription levels of the three genes, we applied a three-way analysis of variance®® to
the measured RNA copy numbers for each gene across all conditions (STAR Methods).
We found that nearly all factors and their combinations significantly affected
transcription levels (F statistics >> 1), but the degree of impact varied across genes
(Table S6). Specifically, G1 transcription was most strongly affected by the looping state
(the greatest F-statistics), G2 by construct orientation, and G3 by drug condition. These
results suggest that, for genes located within a topological domain such as G1 and G2,
transcription is highly sensitive to domain formation and relative gene orientation,
demonstrating a gene syntax effect. In contrast, a gene outside a domain, such as G3,
may be most sensitive to changes in the chromosomal supercoiling state, even though it

still responds to neighboring domain formation.
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RNA puncta likely represent nascent transcription sites on the chromosome

In smFISH images, we often observed that many cells showed discrete RNA
puncta that contained more than one RNA molecule from the same gene (Fig. 3A).
Here, we define an RNA punctum as a diffraction-limited fluorescent spot (radius r of ~
100 nm) detected above the cell background (STAR Methods). The average number of
RNA molecules per punctum varied depending on different conditions and genes, but
was generally in the range of 1-10 copies (Fig. S2, Table S7). The average number of

puncta per cell varied but was generally in the range of 0-4 (Fig. S3, Table S7).

We reason that these RNA puncta likely represent nascent transcription sites,
because the likelihood of detecting newly produced RNA molecules still attached to or
near the transcription site before they diffuse away or are degraded should be
significantly higher than that of randomly diffusing RNA molecules colocalizing with each
other by chance. To examine this possibility, we calculated the pairwise distance
distributions of all RNA molecules from the same gene using the codir construct as an
example (STAR Methods, Fig. 3B, colored bars). We then compared them with those
calculated by computationally scrambling the spatial coordinates of RNA molecules in
the same cells (Fig. 3B, gray bars). We observed distinct peaks centered at the first 100
nm bin for all the three RNAs, in contrast to broad peaks around 500 nm in the
scrambled controls, which reflected the cell radius (Fig. 3B). In STAR Methods, we
show that the mean displacement, r, of an RNA molecule away from its chromosomal
transcription site is only related to its diffusion coefficient D and degradation rate 4 by
<r?>= 6D/A. Given the relatively fast mRNA degradation rates in E. coli cells (on
average ~ 1/min®), the distinct peaks at the diffraction-limited resolution strongly
suggest that these RNA molecules diffuse slowly inside the cells (D <~ 10° pm?.s™). As
such, the corresponding RNA puncta likely represent nascent transcription sites where
transcribed RNAs are still attached to the chromosomal DNA. We observed similar
pairwise distance distributions for RNA molecules from the same genes or different
genes under all other conditions (Fig. S4).

Besides the prominent peaks at the first 200-nm bin, we also observed a minor,
broader peak centered ~ 1000 nm for the pairwise distance distributions (Fig. 3B). As
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this distance is on par with that between two segregated nucleoids, we reasoned that it
likely arose from two nascent transcription sites, one on each replicated chromosome.
To examine this possibility, we used the codir construct as an example and analyzed the
relationship between cell length (a proxy for cell cycle time) and the number of RNA
puncta per cell, as longer cells are more likely to have replicated and segregated their
chromosomes. We observed that there was a significant correlation for all the three
genes: cells with only one RNA punctum centered at shorter lengths while cells with two
or more RNA puncta shifted to longer lengths (Fig. S5A-F, G1 pspearman = 0.38, p
<<0.001, G2 pspearman = 0.28, p <<0.001, G3 pspearman = 0.39, p <<0.001). The copy
number of RNA molecules per punctum did not exhibit such a cell-length dependence
(Fig. S5G-I, G1 pspearman = 0.03, p = 0.18, G2 pspearman = -0.01, p = 0.53, G3 pspearman =
0.01, p = 0.73). Based on these observations, we aggregated all puncta across all
conditions in long cells (> 2 um) and plotted the average, normalized two-dimensional
(2D) histograms for a cell of standard size (1 um x 3 um). We observed a typical two-
lobed shape (Fig. 3C), reminiscent of replicated and segregated nucleoids as we and
others previously observed.’®®* In contrast, short cells (< 1.7 um) exhibited a single-
lobed distribution (Fig. 3D). Normalized 2D histograms of RNA puncta in all other
individual conditions showed similar patterns (Fig. S6). Taken together, these
observations strongly suggest that RNA puncta are likely nascent transcription sites on
the chromosome, where RNA molecules are still attached to or in proximity to their

chromosomal gene locus.
Intrinsic variations of RNA copy number per cell suggest bursty transcription

Previous studies have established that for a random, birth-and-death
transcription process, the distribution of RNA copy number per cell follows a Poissonian
distribution, with the Fano factor (f = ¢2/u) equaling one.®®®® A super Poissonian
distribution with f > 1 often indicates a bursty transcription process, in which a gene is
only switched on for a short period of time to produce multiple transcripts before it is
switched off.°”°® Therefore, we compiled distributions of RNA copy number per cell in
different conditions to examine the corresponding transcription mode. To avoid the

complication of transcription from two replicated chromosomes in the same cell, we
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used data from short cells (< 1.7 um) where most cells only contained one unreplicated
chromosome. We observed that most conditions showed non-Poissonian distributions
and were best fit with a negative binomial distribution, indicative of transcriptional

bursting %°°

(Fig. S7). However, previous studies, including ours, have shown that a
non-Poissonian distribution can also result from extrinsic noise, i.e., cell-to-cell
variation.”*"® Specifically, fluctuations in RNAP levels and the cellular environment
across different cells, which we collectively termed the extrinsic variable E, could lead to
heterogeneous transcription rates and, consequently, significant variations in RNA copy
number distributions, in addition to intrinsic variations caused by the inherent

stochasticity of the corresponding transcription mode.

To separate the influence of extrinsic noise and identify the intrinsic transcription
mode, we made use of the observation that in long cells (> 2.0 um), RNA puncta were
well separated between the two halves and likely represented nascent transcription
sites on two replicated chromosomes (Fig. 3C). As the same gene on the two replicated
chromosomes shared the same extrinsic RNAP level and cellular environment, the RNA
copy nhumber variation between the two halves of the cell reflects the intrinsic stochastic
nature of transcription at the same extrinsic variable E, while that across different cells
(different E values) reflects the influence of both the intrinsic and extrinsic stochasticity.
Therefore, the total noise (variation across all cells, n2,. = a%/u?) for each gene can be
decomposed into intrinsic and extrinsic contributions, n%, = n%,+ n%,, similar to what
was previously performed on two different genes in the same chromosome (STAR
Methods).”>™

Using this approach, we computed the extrinsic and intrinsic noise of each gene
based on its RNA numbers in the two halves of long cells (length > 2.0 um, STAR
Methods). We observed that, across all conditions, while extrinsic noise contributed
significantly (Fig. 3E, white bars), the total noise remained dominated by intrinsic noise
(Fig. 3E, gray bars; Table S8A), suggesting a difference between transcription and
translation, with the latter often dominated by extrinsic noise.”"®*"* Topological domain
formation increased intrinsic noise, in general, most likely due to the repressed

transcription levels (compare the intrinsic noise levels of the looped v.s. unlooped
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conditions in Fig. 3E). Indeed, plotting the decomposed intrinsic and extrinsic noise
components against the mean RNA expression levels showed the expected trends that
the intrinsic noise decreased as expression levels increased. In contrast, extrinsic noise
was largely independent of expression levels (Fig. S8A, B). Most importantly, the
intrinsic Fano factors of all three genes were, under most conditions, still significantly
larger than one and independent of expression levels, demonstrating a non-Poissonian,

bursty-like transcription mode (Fig. 3F, gray bars; Table S8B; Fig. S8C, D).

We note that the approach of using the two halves of long cells as proxies for two
chromosomal gene copies relies on the assumption that individual transcripts diffuse
slowly across the two halves of the cell, so that there is minimal mixing before the
transcripts are degraded. The observation of diffraction-limited RNA puncta with multiple
RNA copies in many puncta, as in Fig. 3A-C, suggests that this assumption is
reasonable. As a further control, we computationally scrambled the number of RNA
molecules across the two halves of the cells and recomputed the corresponding intrinsic
and extrinsic noise. We observed that the resulting intrinsic noise diminished
significantly to nearly zero, whereas extrinsic noise increased (Fig. S9A, STAR
Methods). This computational control validated the minimal mixing assumption of
transcripts between the two cell halves and also suggested that the calculated intrinsic
noise was the lower bound of the true intrinsic noise, as any mixing between the two

halves of the cells would only reduce the apparent intrinsic noise (STAR Methods).
Correlation analysis suggests coupled transcription between gene pairs

In smFISH imaging, we observed that RNA puncta from different genes often
colocalized (Fig. 3A, Fig. S4). This observation not only supported the interpretation
that they likely represented nascent transcription sites from the corresponding
chromosomal locus but also raised an interesting question of whether the expression of
different genes could be correlated in time. We reasoned that if two genes from the
same chromosomal locus transcribed independently from each other, their RNA copy
numbers should be uncorrelated. However, if one gene’s transcription were coupled to
another gene, for example, G1 is only on when G2 is on (or off), their RNA copy

numbers would be correlated (or anticorrelated).
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To examine this possibility quantitatively, we calculated the Spearman correlation
coefficients for all gene pairs under all conditions (Table S9). To avoid potential
complications brought by two replicated chromosomes, we only used cells shorter than
1.7 um. We observed varied but significant correlations between gene pairs in most
conditions, except for a few (Table S9). For example, G1 and G2 transcription
correlated significantly with each other in ten out of twelve different conditions (all
except the codir-scn and div-loop-scn conditions). Similarly, G2 and G3 transcription
also showed significant correlations or anticorrelations in all except the div-nov
condition. As a control, when we computationally scrambled RNA copy numbers for a
single gene across all cells within the same condition, its correlation coefficient with the
other genes dropped to nearly zero (Table S9). These results strongly suggest that
genes within the same local chromosomal context could be coupled in transcription,

even though each gene has its own independent promoter and terminator.
Covariance analysis demonstrates intrinsic gene-gene coupling

What could lead to the observed correlations among different gene pairs? We
reason that neighboring genes could influence each other’s transcription through the
supercoils that they generate and share during transcription on the same chromosomal
DNA. If so, analyzing the intrinsic correlation between different gene pairs under various
conditions may identify important factors modulating the DNA mechanics-based gene-
gene interactions. However, as we described above for single-gene noise analysis,
gene-gene correlation can also arise from shared external factors, such as RNAP levels
and cellular environments. For example, if the RNA counts of two genes (m,, m,) both
depend on a shared extrinsic variable E (Fig. 4Ai), any variation in E could modulate

the apparent correlation between m, and m, (Fig. 4Aii)

To distinguish the intrinsic and extrinsic contributions to the observed gene-gene
correlations, we extended a previous mathematical framework that separates the two
components from the expression variations of a single gene.”® This new framework
allowed us to decompose the total covariance cov,.(m,;,m,) of expressed RNA
molecules from two genes into intrinsic cov;,(m;,m,) and extrinsic

covg,(my,m,) components (Fig. 4A, STAR Methods). Here, the transcript numbers
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(m,, m,) depended on extrinsic variables collectively denoted by E (Fig. 4Ai). Using the
same strategy of approximating the two halves of long cells (length > 2.0 um) as two
replicated chromosomes, we obtained from two halves of the same cell two samples of
(m,, m,) under the same value of E, while different cells provide samples for different
values of E. We defined the intrinsic covariance as the covariance between transcripts
from the same gene pair in two halves of the same cell (fixed value of the extrinsic
variable E), averaged over the distribution of E (Fig. 4Aii). The extrinsic covariance was
defined as the covariance between the mean expression levels (m, |E) and (m,|E) due
to variations in the extrinsic variable E (Fig. 4Aiii). The sum of intrinsic and extrinsic
covariances is equal to the total covariance, which can be computed equivalently by
lumping the data across all cell halves (all E values, Fig. 4Aiv). As such, the extrinsic
covariance in this decomposition reflects global co-regulatory mechanisms that
simultaneously impact both genes, while intrinsic covariance isolates the local,

mechanics-based gene-gene coupling.

Using this framework, we computed the covariances of different gene pairs
across all conditions (Fig. 4B). We observed that while gene pair covariances were
dominated by extrinsic contributions, the intrinsic components were significantly non-
zero under most conditions and even negative in some conditions, demonstrating the
presence of local gene-gene coupling independent of the shared cellular environment.
Most interestingly, the G1-G3 pair, which was not immediately adjacent on the
chromosome, also showed significant intrinsic covariances (Fig. 4B, middle panel),
strongly suggesting a coupling mechanism mediated by long-distance interactions, such

as supercoils.
A gene-gene coupling model describes joint RNA distributions quantitatively

The covariance analyses so far demonstrated that transcription of adjacent
genes is indeed coupled through an intrinsic mechanism. However, it does not quantify
the coupling strength or provide insights into the coupling mechanism. Additionally, it is
unclear how different conditions impacted the intrinsic covariance. To address these
guestions, we constructed a gene-gene coupling model that describes the joint

distribution of a gene pair’s transcription quantitatively (Fig. 5A). In this model, a gene i
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(=1,2) switches on and off stochastically with rates k,,, ; and k.g; respectively. In the on
state, the gene produces transcripts at a rate u;, which are degraded at a constant rate
d; independent of the gene state. The switching rates, however, are dependent on the
state of the other gene. For example, when G2 is on, the switching on and off rates of
G1 are modified from (ko 1, kor1) 10 (K'on1,k'ogg1), @nd vice versa. The observed
positive covariance in transcription arises because, for example, when G2 is active, G1
is more likely to turn on (see STAR Methods for mathematical model definition and
analysis of relevant parameter regimes). Conversely, negative covariance occurs when
G2 is active, G1 is more likely to be turned off. This model is therefore a two-gene
generalization of the transcriptional bursting process as previously described’’, but it
goes beyond the transcription kinetics of individual genes to describe the joint

distributions of a gene pair’s transcription, which result from gene-gene coupling.

To account for the extrinsic variability observed in experiments, we incorporated
into the model a distribution of transcription production rates, u;, commonly used to
represent the effects of extrinsic fluctuations, such as RNAP concentration and cellular
resources.”®’* The experimentally determined extrinsic variance (noise) and covariance
(coupling) can then be attributed to fluctuations in the production rates. Because our
estimate of extrinsic noise from long cells is an upper bound, we fixed the distribution of
production rates to match 50% of the observed extrinsic noise and covariance
amplitudes (see STAR methods for details). Thus, our gene-gene coupling model

captured both intrinsic and extrinsic statistics of transcription.

Using a maximume-likelihood approach, we fit the experimentally measured joint
RNA copy-number distributions of gene pairs under each condition to the theoretical
model at half the maximal extrinsic noise level (see one example of G1-G2 in Fig. 5B;
other pairs and associated model parameters are in Fig. S10 and Table S10). To avoid
accounting for transcripts produced by replicated chromosomes, we fit only data from
short cells (< 1.7 um). We found that the model successfully captured the joint
distribution of transcript counts P(m,,m,) across all conditions, including the mean
(Fig. 5C), variances, and covariances (Fig. 5D). As the joint distribution fitting took into

account the extrinsic covariance, it provides intrinsic transcriptional parameters (Table
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S10). Reducing extrinsic noise and covariances to zero or increasing them to the
experimentally measured maximal level produced modest differences in Kkinetic
parameters, but the trends across conditions were essentially the same (Fig. S10B,
Table S10).

Coupling strength between gene pairs depends on supercoiling non-
monotonically

The gene-gene coupling model enabled us to quantify the coupling strength
between a gene pair and to analyze how it was affected by different conditions. We
defined an coupling strength parameter J;; as the relative change of the burst, or switch-
on, frequency of G, due to G i activation: J;; = fo,;(f;'/f; — 1), where f,,; =
koni/(koni t ko) is the fraction of time that gene i is on; f;" = k'q, j/(kori + k' on,j)
and f; = kon j/ (ko + kon ;) @re the probabilities that gene j switches on while gene i is
on for coupled and uncoupled activation, respectively (STAR Methods). This coupling
can be interpreted as frequency of coupling, quantified by f,,, ;, times the magnitude of
the coupling. As our model does not constrain the directionality of coupling (see
Discussion), we used the overall coupling strength Js = J;, + J,,between the two genes
to characterize their coupling strength. We calculated the J¢ values for all pairs across
all conditions (Table S10) and found that the coupling strength varied widely across
conditions and was independent of joint expression levels (Fig. S11). Instead, the
coupling strength appeared to be increased by novobiocin (nov) treatment while
decreased by seconeolitsine (scn) treatment (see G1-G2 pair as an example in Fig. 5E,
blue and green lines). However, this trend was reversed or became non-monotonic
when the constructs were looped (Fig. 5E, red and orange lines). For the other two
gene pairs, we also observed that both drug treatments and looping state modulated the
coupling strength (Fig. S12).

Since novobiocin and seconeolitsine influence supercoiling in opposite ways, and
the local supercoiling level of any gene experiences may depend on its syntax, we
hypothesized that the coupling strength between two genes may be modulated by the
local supercoiling density non-monotonically, in that too high or too low a supercoiling
density would decrease the coupling strength. To illustrate this point, we constructed a
model depicting the relationship between supercoiling and coupling strength as follows.
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As we cannot measure the local supercoiling density in our experiments, we assumed
that each construct (codir or div) under the looped or unlooped condition has a native
supercoiling density o = x., which is shifted one arbitrary unit (a.u.) tooc =x,+ 1 by
novobiocin and o = x, — 1 by seconeolitsine, respectively. We then considered a bell
curve with a height of J,., and width of o to fit each construct’s x, on this curve based
on its measured J; value (STAR Methods). We chose a bell curve to describe the
relationship because of its mathematical simplicity for non-monotonic trends (only two
parameters are required), but other qualitatively similar non-monotonic curves could
also capture the relationship between coupling and supercoiling density.

Using this model, we observed that J; of G1-G2 for all twelve conditions was well
described by a single bell curve (Fig. 5F). Fitting /; of other gene pairs produced similar
results (Fig. S12). The conformity of all /¢ values for each gene pair around a bell curve
provides a qualitative estimate of the native supercoiling level x.underlying the joint
transcriptional response of each gene pair under each condition. For example, the G1-
G2 pair in unlooped conditions (Fig. 5F, blue and green markers) exhibited more
negatively supercoiled levels irrespective of the gene orientations (left side of the bell
curve) compared to their looped conditions (Fig. 5F, orange and red markers),
consistent with the observation that topological domain formation isolates genes from
the globally negatively supercoiled chromosomal DNA and represses their expressions
(Fig. 1C-F). The modeled G1-G2 coupling strengths of a few conditions, including div-
loop (red square), div-loop-nov (red diamond), div-nov (green diamond), and codir-loop-
scn (orange circle), were the highest among other conditions, placing their native
supercoiling levels midway on the bell curve. Interestingly, the bell curves estimated
differential native supercoiling levels of gene pairs G2-G3 and G1-G3 compared to that
of the G1-G2 pair even under identical unlooped conditions (Table S10, Fig. S12),
suggesting that each gene may experience a unique, local supercoiling density related
to its own syntax and differential coupling with neighboring genes, in contrast to the
common assumption that the same supercoiling level rapidly equilibrates and is
commonly shared by all genes on the same chromosomal DNA.

Discussion
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In this work, we investigated how chromosomal topological domain modulates
transcription in E. coli. Using a controllable domain-formation approach that alters the
chromosomal domain topology in the native cellular environment without altering gene
or promoter sequences, combined with single-cell, single-molecule RNA quantification
and modeling, we demonstrated that topological domain formation significantly impacts
transcription levels of individual genes and modulates gene-gene coupling. Our results
establish that chromosome topology is a major transcription regulator, independent of

protein transcription factors.

We observed that domain formation consistently repressed transcription of genes
enclosed within the domain (G1 and G2), regardless of their relative orientations (Fig.
1C-F). These results are consistent with the model in which torsional stress
accumulates within topologically constrained regions, reducing promoter accessibility or
preventing RNAP escape from the initiation complex.”” Interestingly, G3, which is
located outside the domain, also showed repressed transcription upon domain
formation, suggesting that the formation of a new topological domain boundary could
influence neighboring transcription units, regardless of whether it is part of an existing
topological domain. As G3 is separated from the nearest domain boundary (Or operator
site) by nearly 600 bp, the repression effect is most likely mediated by accumulated
negative DNA supercoils between the promoter and the boundary, which can propagate
on the DNA through long distances, as previously observed within a topological

domain.*®

Perturbations to DNA supercoiling levels provided further insight into the
functional consequences of torsional stress. Inhibition of gyrase with novobiocin, which
increases positive supercoiling, led to pronounced repression of G3 transcription
compared to that of G1 and G2, regardless of the domain formation (Fig. 2A, B). This
repression is likely because G3 is the most highly transcribed gene among the three,
which requires significantly higher gyrase activities to remove positive supercoils
generated by its transcription. However, topological domain formation appears to
exacerbate the repressive effect of gyrase inhibition on G1 and G2, suggesting that

topological domains enhance gene sensitivity to accumulated supercoils (Fig. 2A, B).
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In contrast, inhibition of Topoisomerase | with seconeolitsine, which leads to
increased negative supercoiling, produced context-dependent outcomes. The divergent
construct showed seconeolitsine broadly enhancing transcription regardless of looping
(Fig. 2C, D). This result can be related to the established activation of divergent
promoters by transcription-induced supercoils in topA-deficient strains.”® The
codirectional construct showed repressed transcription in the absence of the domain
formation but enhanced transcription in the presence of the domain (Fig. 2C, D). This
inversion suggests that additional negative supercoils can either restore or hamper

promoter accessibility, depending on the gene's syntax.

Analyzing the correlation between the percentage transcription change of each
construct after drug treatment and its basal expression level revealed that accumulated
positive supercoils repressed transcription, whereas accumulated negative supercoils
had a homogenizing effect, repressing highly expressed genes while activating lowly
expressed genes (Fig. 2E, F). It is possible that highly expressed genes generate a
high level of negative supercoils behind RNAP in a naturally negatively supercoiled
chromosomal environment; thus, further accumulation of negative supercoils caused by
Topo | inhibition represses transcription, likely by trapping RNAP at promoters. Lowly
expressed genes, especially under the looped, constrained conditions where genes are
insulated from the naturally negatively supercoiled chromosomal DNA, required more
negative supercoils to be activated. These observations support a model in which
positive and negative supercoils exert differential regulatory effects, shaped by domain

architecture and gene orientation.

Beyond modulating the transcriptional output of individual genes and their
responses to global supercoiling levels, topological domain formation also impacts
transcription coupling between neighboring genes in complex ways. Despite strong
apparent correlations between the expressed RNA copy numbers of different genes
(Table S9), the presence of extrinsic noise (e.g., due to fluctuations in RNAP levels)’*~
3 prevented us from isolating the intrinsic correlations that resulted solely from the
transcription coupling between genes. To address this problem, we leveraged the
observation that distinct RNA puncta containing multiple RNA molecules most likely
represent nascent transcription sites on the chromosome (Fig. 3B, Fig. S4). We also
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noted that long cells (>2.0 um) contain well-separated transcription sites in the two
halves of the cell, most likely corresponding to two replicated chromosomes (Fig. 3C).
Based on these observations, we developed a decomposition analysis to separate the
influence of extrinsic noise on individual gene transcription from the correlations

between different genes.

We showed that at the individual gene level, intrinsic noise dominated and that
topological domain formation increased intrinsic noise (Fig. 3E), most likely due to the
repressed expression levels (Fig. S8). The intrinsic Fano factors of the three genes
were all significantly larger than one (Fig. 3F), indicating a non-Poissonian transcription
process and most consistent with transcriptional bursting. Here, topological domain
formation did not appear to alter the intrinsic transcription mode, suggesting that

transcription bursting may be a common transcription mechanism in bacteria.

Extending our decomposition analysis to the expression of genes on the same
chromosome (Fig. 4A), we isolated the intrinsic and extrinsic covariances between any
two genes in their transcribed RNA copy numbers. Here, intrinsic covariance refers to
the internal coupling of two genes due to their shared chromosomal DNA state, whereas
extrinsic covariance refers to external factors, such as RNAP levels and cellular
resources, that are shared by genes in the same cells. We observed that extrinsic
covariances dominated across all conditions, but significant intrinsic covariances
persisted (Fig. 4B). In most conditions, transcription of a gene pair was positively
correlated (positive intrinsic covariances), largely independent of topological domain
formation. However, G1 and G2 showed significant negative covariances in two
opposing conditions, codir-loop-nov and div-loop-scn, which, when compared to the
positive covariances under the corresponding unlooped conditions, suggest that
topological domain formation indeed impacts gene-gene coupling in a syntax-dependent

manner, here possibly due to different gene orientations.

What could lead to the observed intrinsic correlations or anticorrelations between
different genes? We reasoned that transcription-generated supercoils, along with the
native supercoiling state of the shared chromosomal DNA, could create different local

supercoiling environments with varying DNA mechanics, through which neighboring
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genes modulate each other’s transcription. This possibility is supported by the
observation of significant intrinsic covariances among all the three gene pairs including
the G1-G3 pair, which were nearby but not immediately adjacent to each other on the
chromosome like the G1-G2 and G2-G3 pairs (Fig. 4B). As such, one gene’s
transcription could influence another gene’s transcription in a context-dependent
manner, creating complex transcription dynamics independent of protein transcription
factors. For example, one gene’s switching-on rate could depend on the on- or off-state
of a neighboring gene, and vice versa, because the local supercoiling shared by the two

genes may differ under different combinations of expression states.

To understand quantitatively how neighboring genes modulate each other’s
transcription, we developed a minimal theoretical model to capture the joint distributions
of RNA copy numbers for gene pairs across all conditions (Fig. 5A-D). The model
showed that the overall coupling strength between gene pairs is independent of their
expression levels but instead dependent on gene syntax (Fig. S11). Interestingly, for the
same construct, shifting the global negative supercoiling levels from high (treated with
seconeolitsine) to native (untreated) and to low levels (treated with novobiocin)
produced varied, sometimes opposing, and non-monotonic responses (Fig. 5E, Fig.
S12). Based on these observations, we proposed a model in which gene-gene coupling
exhibits a non-monotonic dependence on supercoiling levels, with extremely high or low
negative supercoils reducing coupling (Fig. 5F), just as extreme positive and negative
supercoils decrease the mean expression levels. Importantly, this model also indicated
that each construct’s local supercoiling density is modulated by its unique gene syntax
(Fig. 5F, Fig. S12), in contrast to the commonly assumed rapid diffusion and
equilibration of supercoils on chromosomal DNA. It is possible that supercoils along the
DNA are maintained locally between any two transcribing RNAP molecules, which form
topological barriers, but are not uniformly shared along the DNA. These local supercoils,
when combined with stochastic transcription initiation, gene orientations, and topological

domain formation, gave rise to complex gene-gene coupling behaviors.

One limitation of our study is that, from the steady-state RNA distributions
measured by smFISH, we could only determine the overall coupling strength but not its
directionality (see STAR Methods and Fig. S10B). Our model predicts that the
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directionality of coupling would lead to asymmetries in temporal correlations (Fig.
S10B). Therefore, future experiments measuring the dynamics and temporal
correlation of gene expression would help determine the dominant direction of the gene-
gene coupling, which would provide additional information about the microscopic
mechanisms  underlying  supercoiling-mediated  gene-gene  coupling.  Such
measurements may be explored using the DuTrAC single-molecule gene expression
reporters that we developed previously.” The temporal information would reveal more
information about the correlations and coupling mechanisms present in topologically
interacting genes and key parameters for expanding our model.

Another limitation of our study is that we did not account for the effects of co-
transcriptional translation. As all three genes contained ribosomal binding sites, mMRNA-
associated polysomes during co-transcriptional translation likely contributed significantly
to the observed supercoiling sensitivity of the genes due to the additional torsional
stress. Thus, translation could also alter transcription dynamics through the act of
topological constraint. This possibility will be explored in future work.

Finally, despite multiple attempts, we were not able to obtain a convergent
chromosomal construct in which G1 and G2 transcribe toward each other. We
suspected that the convergent arrangement of G1 and G2 at their expression levels
may create a high level of chromosomal DNA torsional stress due to the accumulated

positive supercoils in between*#° 81,82

, leading to chromosomal instability.

In summary, our findings established that chromosomal topology and DNA
supercoiling constitute an intrinsic mechanical layer of transcriptional regulation.
Topological domains can modulate gene expression levels and couple neighboring
genes, providing a physical mechanism for context-dependent coordination across the
chromosome. These results highlight how mechanical effects and constraints work
together with canonical regulatory networks to control transcription in complex

chromosomal environments.
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Figure 1. Topological domain formation represses transcription in the

codirectional and divergent constructs.

(A) Schematics of the chromosomal constructs. Each construct contains three genes
(G1, G2, and G3) arranged either codirectionally (codir, top) or divergently (div, bottom).
The binding and octamerization of the CI repressor on the flanking operator sites
(3x0.123 and 2x0r123) induce intramolecular looping, forming a topological domain

encompassing G1 and G2 while leaving G3 outside.

(B) Schematics of single-molecule fluorescence in situ hybridization (smFISH) detection
of dye-labeled probes for G1 (blue), G2 (green), and G3 (red) transcripts, respectively,
in a single E. coli cell with a yellow dashed outline (i), representative images of a view
field of E. coli cells in phase-contrast (ii), fluorescence overlay (iii), and individual
smFISH fluorescence channels for G1 (iv), G2 (v), and G3 (vi), respectively. Scale bar:

1 um.

(C) Mean RNA copy number per cell for G1, G2, and G3 in the codirectional construct
(solid outline) under unlooped (light bars) and looped (dark bars) conditions.

(D) Corresponding percentage changes of each gene in the codirectional construct
upon looping.

(E) Mean RNA copy number per cell for G1, G2, and G3 in the divergent construct

(dashed outline) under unlooped (light bars) and looped (dark bars) conditions.

(F) Corresponding percentage changes of each gene in the divergent construct upon

looping. Error bars represent the standard error of the mean (Table S4).


https://doi.org/10.1101/2025.11.23.690031

bioRxiv preprint doi: https://doi.org/10.1101/2025.11.23.690031,; this version posted November 23, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

29

0)

)y
Vi

(]

o,
-
-

ange (¢

)
=

-1|‘
- I L

~
J
"™
J

I
N
<

[}

(9]

]

£ T £ L
E L iCodir 1] ; § E
G1 G2 G3 G1 G2 @GS
C D +~""=_Looped + Scn
Unlooped + Scn (Ao < 0) / G;( ) 6,(Ac < 0)
Topol 3XOL GI 62 ZXO.-(’ GIJ’ Gyrase To&p%imoﬁl\‘} 2)
~150 —~150;
X |CICodir X
© 100DV © 100
(@)} ] [®)]
C [ C
« : ! ©
5 50 ¥ 5 50
8 = g ©
@ : o)
0 50 Q- 50
Gt G2 G3 G1 G2 G3

E F

Effect of Gyrase Inhibition Effect of Topo | Inhibition

S + Unlooped 5 ¢ Unlooped
nloope o) + Unloope
(4] L
o2 100 + Looped S 1001 o Looped
= ¢
& 50 O s0r 7,
O % ® 0¢
& Oy g o -
8 ¢ o o °
C e}
$ -501 O 50
O N 9
9 100 : -100
0 5 0 5

Mean RNA Count (+Nov) Mean RNA Count (+Scn)


https://doi.org/10.1101/2025.11.23.690031

bioRxiv preprint doi: https://doi.org/10.1101/2025.11.23.690031; this version posted November 23, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

30

Figure 2. Genes respond to topoisomerase inhibition differentially in a context-

dependent manner.

(A) Percentage change in the RNA copy numbers for genes G1, G2, and G3 for
unlooped constructs due to gyrase inhibition by novobiocin (+Nov, top schematics). Bars

with solid/dashed outlines represent codirectional/divergent constructs.
(B) Same as (A) for looped codirectional (solid) and divergent (dashed) constructs.

(C) Percentage change in the RNA copy numbers for genes G1, G2, and G3 for
unlooped constructs due to Topo | inhibition by seconeolitsine (+Scn, top schematics).

Bars with solid/dashed outlines represent codirectional/divergent constructs.
(D) same as (C) for looped codirectional (solid) and divergent (dashed) constructs.

(E) Scatter plots of the baseline expression levels (x-axis, untreated) and percent
change (y-axis) after novobiocin treatment. Light and dark markers represent unlooped

and looped conditions, respectively.

(F) Scatter plots of the baseline expression levels (x-axis, untreated) and percent
change (y-axis) after seconeolitsine treatment. Light and dark markers represent
unlooped and looped conditions, respectively. For all the bar and scatter plots, error

bars represent the standard error of the mean.
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Figure 3. RNA puncta likely represent nascent transcription sites on the
chromosome.

(A) Representative three-color smFISH images (left) of four E. coli cells showing G1
(blue), G2 (green), and G3 (red) RNA puncta with overlays. Cells are outlined in yellow
dashed lines. The corresponding spatial maps of all puncta from these cells are shown

in the right, where each punctum was colored by RNA type (blue: G1, green: G2, red:
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G3) and scaled in size according to the RNA copy number in that punctum. Scale bar: 1

um.

(B) Pairwise distance distributions for G1-G1, G2-G2, and G3-G3 puncta in the
codirectional construct. Distances are weighted by the number of RNA molecules in
each punctum. Grey bars represent control where the puncta location is scrambled

within the same cell.

(C) Two-dimensional probability distribution of puncta localizations for long cells (> 2.0
pum) across all conditions and all RNAs. The cell size is rescaled to a standard size of 1

um x 3 um.
(D) Same as (C) for short cells (< 1.7 pum).

(E) Decomposition of intrinsic and extrinsic noises for the three genes across all
conditions. Intrinsic noise (gray bars) dominated, and looping in general increased the
intrinsic noise of the corresponding condition. Error bars are estimated via bootstrap

resampling.

(F) Decomposition of intrinsic and extrinsic Fano factors for the three genes across all
conditions. Nearly all conditions had intrinsic Fano factors significantly > 1 (dashed

lines). Error bars are estimated via bootstrap resampling.
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Figure 4: Intrinsic-extrinsic decomposition of covariances of gene pairs across all

conditions reveals gene-gene coupling.

(A) lllustration of the effect of extrinsic variability on the covariance between the expres-
sion of two genes. All data in (A) were synthetically generated to demonstrate the de-
composition procedure. (i) The distribution of measured RNA copy numbers, and
, may depend on extrinsic, or cell-to-cell variability . (ii) The intrinsic covariance be-

tween and is defined as the covariance at fixed averaged over the extrinsic

variable distribution . (i) The extrinsic covariance is the covariance between condi-

tional means, and , over the extrinsic distribution . (iv) The total co-
variance, computed across all observed data, is equal to the sum of intrinsic and extrin-

sic components.

(B) Intrinsic-extrinsic covariance decompositions of G1-G2, G1-G3, and G2-G3 gene
pairs, normalized by the product of the corresponding mean expression levels. While
extrinsic variation (white bars) contributes more significantly to the apparent total covar-
iance, the intrinsic components (gray bars) are significantly non-zero for most condi-

tions.
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Figure 5. A four-state theoretical model captures coupled stochastic gene

expression.

(A) The four-state model of coupled transcription of two genes (G1, G2). Each gene
stochastically switches between on and off states, with transition rates dependent on
the state of the other gene. Transcripts are produced at a rate u; during the on state and

degraded at a rate d;.

(B) Experimentally measured joint RNA count distribution P(m,, m,) (left) and the model

fit (right) of the codirectional construct.

(C) Mean expression levels of G1 and G2 from the model (x value) agree with

experiments (y value) across all conditions. Error bars are bootstrapped errors.

(D) Variance and covariance of G1 and G2 from the model (x value) agree with

experiments (y value) across all conditions. Error bars are bootstrapped errors.

(E) The total coupling strength parameter J; = J;, + J,; varies due to drug treatments by
seconeolitsine (scn) and novobiocin (nov). Arrows indicate whether drug treatments
increase (Ac > 0) or decrease (Ao < 0) overall supercoiling density. Colors represent
different constructs and looping conditions. Error bars are uncertainties in fitting gene

expression to the four-state model.

(F) The construct-dependent response in (E) can be explained by a non-monotonic
dependence (here demonstrated by a bell curve) of the coupling strength J; as a

function of relative supercoiling. Colors represent constructs, and shapes indicate drug
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treatment conditions. Horizontal error bars and the grey shading represent uncertainties
associated with placing points on the bell curve, and vertical error bars represent
uncertainties in fitting gene expression to the four-state model. All results in this figure
were generated by including extrinsic variations in u; with an amplitude equal to 50% of
the upper bound estimated from long cells (see STAR Methods for details and

justification).
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