nature communications

Article

Neurons exploit stochastic growth to rapidly
and economically build dense
dendritic arbors

https://doi.org/10.1038/s41467-025-60800-7

Xiaoyi Ouyang"?%’, Sabyasachi Sutradhar ®"7, Olivier Trottier ® >, Sonal Shree",
Qiwei Yu®?3, Yuhai Tu* & Jonathon Howard ®"2°

Received: 18 November 2024

Accepted: 4 June 2025

Published online: 01 July 2025

Dendrites grow by stochastic branching, elongation, and retraction. A key
question is whether such a mechanism is sufficient to form highly branched
dendritic morphologies. Alternatively, does dendrite geometry depend on
signals from other cells or from the topological hierarchy of the growing
network? To answer these questions, we developed an isotropic and homo-
genous mean-field model in which branch dynamics depends only on average
lengths and densities: that is, without external influence. Branching was
modeled as density-dependent nucleation so that no tree structures or net-
work topology was present. Despite its simplicity, the model predicted several
key morphological properties of class IV Drosophila sensory dendrites,
including the exponential distribution of branch lengths, the parabolic scaling
between dendrite number and length densities, the tight spacing of the den-
dritic meshwork (which required minimal total branch length), and the radial
orientation of branches. Stochastic growth also accelerated the overall
expansion rate of the arbor. We show that stochastic dynamics is an eco-
nomical and rapid space-filling mechanism for building dendritic arbors
without external guidance or hierarchical branching mechanisms. Our work
therefore provides a general theoretical framework for understanding how
macroscopic branching patterns emerge from microscopic dynamics.

M Check for updates

Neurons have the most complex morphologies of all cells. In the fly
brain alone, over 8000 neuronal types are distinguished, primarily by
their shapes'*. Different shapes support different functions, which is
beautifully illustrated in the cases of mammalian retinal ganglion cells®
and fly dendritic arborization (da) cells*. Much of the diversity in shape
arises from the dendrites, which are branched processes that extend
from the cell bodies of neurons and receive signals from other neurons
or the environment. To receive many inputs, dendrites often form
highly branched arbors whose large surface areas can accommodate

many post-synaptic sites or sensory receptors’. Branching is important
because it decreases the distance from the synapses or receptors to
the cell body, thereby reducing propagation times and signal losses
compared to unbranched geometries®. Propagation times are also
reduced by the often-radial orientation of the branches so that distal
signals more quickly reach the centrally located cell body. Branch
points serve as intermediate sites of integration and computation of
the information encoded spatially within the arbor’®. In these ways, the
branched geometries of dendrites are key to neuronal function.
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A fundamental question is: how do branched arbors form and
grow? A partial answer comes from live-cell imaging, which shows that
dendrite growth is highly dynamic. During neuronal development and
regeneration, new branches form by lateral branching from existing
branches, and the growing tips of dendrites transition between
growing and shrinking states: frog brain®'°, cultured” and acute’ brain
slices, retinal explants”, mouse brain®, cultured neurons®, living flies'®
and worms". Importantly, transitions from growing to shrinking states
can occur either spontaneously or after the collision of the growing tip
with another dendrite, mediated by self-avoidance molecules'”. In fly
da neurons, where dendrite morphogenesis has been studied in detail,
the dynamics is highly stochastic®: branching occurs throughout the
arbor, and the transitions between growing and shrinking states are
random, like the dynamic instability of microtubules®.

Can the stochastic dynamics of dendrite tips generate the
observed dendritic arbors of neurons? So-called agent-based models,
which simulate the branching and growth of each tip individually, give
a partial answer to this question. They can generate several of the
observed features of dendritic arbors in Purkinje cells”, Drosophila
class 1 cells***, Drosophila class 1V cells®, and other neurons** . An
advantage of agent-based models is that they are bottom-up and so
mimic developmental processes. This distinguishes them from top-
down models that follow a predetermined template®. Agent-based
models have several limitations, however. First, they are complicated
and may depend on the details of the simulations®. Second, the
complexity makes it difficult to relate the large-scale predictions of the
simulations, such as branch lengths and densities, to the small-scale
behavior: for example, how does branch length depend on branching
and growth rates? This will be important when relating molecular
and genetic processes underlying branching and growth to the phe-
notypic properties of morphologies*””. Third, there are other
mechanisms not addressed in agent-based models. For example, two-
step models distinguish between “main” branches and peripheral
branches, and have successfully recapitulated the morphologies of
Drosophila class 111 cells, whose branches are decorated with branch-
lets that depend on the actin cytoskeleton®. Other models consider
dendrites as a hierarchy of primary, secondary, tertiary, etc. branches
and propose that the formation of new branches depends on the
position within the hierarchy’>***, In other words, growth may
depend on the topology of the developing dendrite, which cannot be
tested by agent-based models because they have their own inherent
topology.

In this work we address the limitations of agent-based models, by
developing a “mean-field” model to test whether stochastic dynamics
alone can generate observed dendrite morphologies. Mean-field
models have a rich history in physics and have successfully been
applied to several areas of biology, including electrical excitability®,
patterning®, and collective migration®*. The advantage of mean-field
models over agent-based ones is that they greatly reduce the number
of variables. For example, even though electrical excitability can be
simulated by an agent-based model with thousands of individual ion
channels, it is the mean-field theory, which takes the form of the
Hodgkin-Huxley equation, that revealed the dependence of the speed
of the action potential on the rate and voltage-dependence of channel
gating, axon diameter, and the passive electrical properties of the
membrane®. In the case of dendrites, the number of degrees of free-
dom is reduced from the thousands of individual branches to just the
branch number density and the branch length density. This simplifi-
cation allows analytic solutions to global morphological properties
such as the statistics of branch lengths and densities in terms of the
microscopic properties such as the branching rates, tip speeds, etc.
Furthermore, because branching is replaced by nucleation, the mean-
field approach does not simulate arbors nor consider the tree structure
of the networks. Therefore, the field does not have topology. Yet, as we
show, the model can quantitatively account for many geometric

properties of Drosophila class IV cells, including branch length dis-
tributions, branch densities and orientation, the rate of arbor expan-
sions, and several empirical scaling laws. Thus, mean-field models can
test whether topology is necessary for arbor geometry. We discuss
how the model could provide insight into mutations and how the
model, which is formulated for two-dimensional arbors, might gen-
eralize to other neurons, including those with 3D arbors.

Results

Class IV da neurons form a dense network of dendritic branches
We used fly sensory neurons to investigate the relationship between
the dynamics of dendrite branches and arbor morphology. The highly
branched arbors of Drosophila class IV da nociceptors sense noxious
stimuli, including heat®, ultra-violet light”’, and harsh mechanical
stimuli*® over a large area of the larval surface (Fig. 1a, b)**°. Because
the dendrites grow on the approximately planar surface of an extra-
cellular matrix®, the arbor is quasi-two-dimensional: this simplifies
image processing and theoretical analysis. By 48 h after egg-lay (AEL),
the arbors fill the larval segments with a fine meshwork of dendrites
(called “tiling”*°), which serves to detect acute localized stimuli such
as penetration of the cuticle by the ovipositor barbs of parasitoid
wasps” (Fig. 1a). Electrical signals, initiated by cell-surface receptors,
are conducted to the cell body before being relayed to the central
nervous system*>*> where they initiate escape responses, such as roll-
ing, to displace the wasp before it lays an egg®. While these dendrites
do not receive synaptic input, their morphology” and topology**
resemble those of central neurons such as retinal ganglion cells and
Purkinje cells, which are also approximately planar. Therefore,
principles learned from class IV cells may provide insight into other 2D
arbors (and see Discussion for how the principles may extend to 3D
arbors).

Over the 5days of development, class IV arbors grow from
100 pm to 500 pm in diameter*°(Fig. 1c-e). The length density of
dendrites, defined as the total branch length per unit area, reaches a
plateau in the central region (uniform color in Fig. 1c-e), suggesting
that a steady state has been reached there. The density then spreads
as a moving front (Fig. 1f, g). The plateau levels decrease by about
50% over development while the widths increase 5-fold.

There are two types of branches (Fig. 2a, b): terminal branches
extend from a branch point to a tip, and internal branches connect
either two branch points or a branch point and the soma. The number
of terminal branches is approximately equal to the number of internal
branches (Fig. 2a). The average lengths of terminal and internal bran-
ches are also similar (Fig. 2c). Both types of branches have exponential
length distributions, with similar means at all developmental stages
(Fig. 2d, Supplementary Fig. 1a-c).

Dendrite branches tend to be radially oriented: the radial angle (6
in Fig. 2a) that each branch makes with the radial direction (example in
Fig. 2e) is peaked in the outward direction (Fig. 2f-h, Supplementary
Fig. 1d-f). Further analysis revealed that internal branches pre-
dominantly contribute to this peak (Fig. 2h), whereas terminal bran-
ches are more isotropic (Fig. 2g). In this work, we show that these
properties are a consequence of the dynamics of the dendrite tips of
these cells.

Branching, growth, retraction, and branch interconversion
occur on short timescales

The dendrite tips of class IV cells are highly dynamic on the minute
timescale. As previously reported by Shree et al. *°, after the formation
of a new branch (which occurs on both terminal and internal den-
drites), tips grow, shrink, and pause, and following collision with the
shaft of another dendrite, they retract and disappear (Fig. 3a, b). In
addition to these behaviors, we discovered that branches sometimes
reappear at the sites of disappearance (Fig. 3c). We measured the
probability of reappearance, B, which we call the rebranching
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Fig. 1| Growth of class IV neurons during development. a Schematic of a Dro-
sophila larva from the dorsal side attacked by a parasitoid wasp. Larval body plan
axes are marked with anterior (A), posterior (P), dorsal (D), ventral (V), dorsal left
(L), and dorsal right (R). The size of the larva is exaggerated in comparison to the
wasp. b Class IV neurons (48 h after egg-lay, AEL) are marked with the trans-
membrane protein CD4 tagged with green fluorescent protein (GFP) (genotype
is;;ppkCD4-tdGFP) and imaged using a 40x water immersion objective by spinning-
disk confocal microscopy and displayed as the maximum projection of 10 sections
(see Methods). The scale bar is 100 um and also applies to (c-e). White arrowheads
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indicate tilings. c-e Coarse-grained dendrite length density of class IV neurons at 24
(13 cells from 10 animals), 48 (12 cells from 12 animals), and 96 (9 cells from 9
animals) hours AEL, respectively. The rectangles represent the corresponding
average segment sizes at each developmental stage, with gray-shaded regions
being the standard error of the mean (9 cells from 3 animals for each develop-
mental stage). f, g Mean dendrite length density along the AP and LR axes at
different developmental stages: 24 h in red, 48 h in purple, and 96 h in yellow. The
scales in (f, g) are the same as for (b-e).

probability, and found it to be -0.2 throughout development (Fig. 3d).
The rate of rebranching is much larger than expected for de novo
branching (Fig. 3e, see “Experiments and Image Analysis” in Methods
for details). Rebranching is important conceptually, and it improves
the quantitative agreement between the model and the data. The rates
of branching, growth and shrinkage, and the transitions between
states, together with rebranching, are the input to the mean-field
model (Table 1).

Branching and debranching can create and destroy terminal and
internal branches. When a new branch forms on a terminal branch, the
proximal part of the terminal branch becomes a new internal branch
(Fig. 3b and see Supplementary Fig. 2a). Conversely, when one of the
sibling terminal branches disappears, the parental (internal) branch
fuses with the sibling to become a longer terminal branch (Fig. 3b(Gii)
and Supplementary Fig. 2b, c). In these cases, terminal and internal
branches interconvert. In contrast, branching and debranching on an
internal branch do not interconvert branch types (Supplementary
Fig. 2d-f). These are the rules by which terminal and internal branches
are created and lost. The net result is that the numbers and length
distributions of internal and terminal branches are equal (Fig. 2c, d and
Supplementary Eq. (8)).

Three-state mean-field model

In this section, we describe the mean-field model in non-mathematical
language. The equations are formulated in the next section and solved
in the Methods. In the mean-field model, every position in the arbor
is associated with four properties: average branch number density

(N, branches per unit area), average branch length density (p, the
branch length per unit area), the distribution of branch lengths, and
the distribution of the radial orientation of the branches (relative to the
radial angle). The branches can be growing, shrinking, or paused and
switch stochastically between these states, analogous to the dynamical
instability of microtubules®. We initially focus on terminal branches.
Internal branches are accounted for quite simply because they have
similar numbers and lengths to terminal branches (Fig. 2c, d and
Supplementary Information: “Full Model” section). This mean-field
approach is a great simplification over agent-based models, which
keep track of the hierarchical order of thousands of growing and
interacting branches.

Branching is implemented as nucleation proportional to the local
dendrite length density. This mimics random branching along existing
branches, consistent with spatially uniform branching throughout the
arbor?. This leads to spatial homogeneity in the central region of the
arbor (Fig. 4a). By modeling branching as nucleation, the arbor can be
thought of as a set of directed lines (Fig. 4b,c) with no topology.
Branching is assumed to be isotropic, without directional preference,
similar to the observed broad distribution of new branches®. This
leads to isotropic terminal branches in the central region. Branches are
born in the growing state, and then stochastically transition between
the three states (growing, shrinking and paused) according to the
measured rates (Table 1). The branches are assumed to be straight,
consistent with their high persistence length?. In our implementation
of the model, there are no external cues that could lead to inhomo-
geneities or anisotropies.
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Fig. 2| Distribution of branch length and orientation. a The schematic illustrates
branch classification. A terminal branch (blue segment) extends from a branch
point (small gray circle) to a tip (red circle), while an internal branch (brown seg-
ment) connects either two branch points or a branch point and the soma (large
gray circle). For a binary tree, the number of terminal branches exceeds the
number of internal branches by one. Theta (6) denotes the angle of the branch
relative to the radial direction (red dashed line). b The skeleton of an example class
IV neuron at 48 h AEL showing terminal branches in blue and internal branches in

Radial angle (rad)

Radial angle (rad) Radial angle (rad)

brown. ¢ The average lengths of terminal and internal branches are similar (61 cells
ranging from 24-120 h AEL). The black line has a slope of one. The black point
corresponds to the cell in (b). Insets show the terminal and internal branches of the
dendrite in (b). d Branch lengths at 48 h AEL are shown with exponential fits
(ignoring the first bin). e The branches in the same cell as (b) are color-coded by
radial angle. f-h Radial-angle distributions for all branches, terminal branches only,
and internal branches only at 24 and 96 h AEL. The distributions are peaked in the
outward direction in (f) and (h) but remain mostly flat in (g).

Collision is modeled as the instantaneous elimination of growing
dendrites following contact with pre-existing branches. This is moti-
vated by the observation that, following collision, the dynamics is
strongly biased towards the shrinking state’*. The collision rate
increases with the average growth speed, v, as in a chemical reaction,
and also increases due to the length fluctuations caused by stochastic
growth (a positive fluctuation may cause a collision sooner than if the
growth were constant). This latter contribution is proportional to the
diffusion coefficient D associated with the stochastic growth® (also see
Methods: “Drift and diffusion”).

Although this coarse-grained approach overlooks the fine struc-
ture and topology, it is amenable to mathematical analysis and has
predictive power. In parallel, we implemented a directed-rod simula-
tion that mimics the mean-field representation (Fig. 4c, Supplementary
Fig. 3a, Methods: “Directed-rod simulation” section), which provides a
visualization of the mean-field model, allows us to determine collision-
associated geometric pre-factors, and serves as a check on the analytic
solutions.

Mathematical formulation of the three-state model

The mean-field equations for the dendrite densities ny(r,[,0,t) for
terminal branches with length [, with radial angle 6, at radial position r,
attime ¢, in state X € (G, S, P) are:

ong(r,1,0,t) _

ot (ks +kgp)ng + ksgns +kpgnp

ong
g
14
= Keallr, g = 5 R(r, O)ng

ong(r,1,6,t ons v
ST) =kestg — (ksg +ksp) s + Kpsrtp +vs 5 + 2 R(r, )
2
onp(r,1,0,t
onp(r,1,6,0) _ kepn +kspis — (Kpg +Kps) 1p (©)

ot

See parameter descriptions in Table 1. The Oth and 1st order
moments of the dendrite density ny(r, [, 8, t) in state X € (G, S, P) with
respect to [ and integrated over 0 are:

Ny(r, £) = / "o / :odlnx(r,l, 6,0) @

~ 1T r 00
px(r ) = / a9 / dll - ny(r,1,6,0) )
- 0
We call Ny(t) the number density (number of dendrites per unit
area) in state X and call py(¢) the length density (dendrite length per
unit area) in state X. In addition, we let Nt = 3"y s pyNx and pr =
2 xe,s,pPx be the terminal branch number and length density,
respectively. The total number and length density including internal
branches are adjusted by doubling those of terminal branches, yielding
Niot =2N7 and p, =2p;. See Supplementary Information for formal
derivations using a full model with terminal-internal branch inter-
conversions. The average branch length equals [ =p,,, /Ny
The three left-most terms in Egs. (1-3) are the tip transitions
between the three states, with rates given in Table 1. The transitions are
assumed to be Markovian, for which there is experimental support®.
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Fig. 3 | Dendrite dynamics. a Time-lapse images illustrating the microscopic beha-
vior of dendrite branches at 24 h AEL. b Schematics of the branch dynamics in (a).
Growing, shrinking, and paused tips are indicated by green, magenta, and orange
arrowheads, respectively. The green arrowheads with radiating lines indicate
branching events. The faded green arrowhead with a dashed line indicates a collision.
The faded magenta arrowhead indicates spontaneous branch disappearance. ¢ Time-
lapse images of a 24 h class IV dendrite tip showing a debranching event (white
arrowhead indicates the site of tip disappearance) and the subsequent rebranching
(white circle). d The probability of rebranching within 1520 min of debranching at
different developmental stages (24 h: 12 cells from 6 larvae, 48 h: 6 cells from 6 larvae,
96 h: 6 cells from 6 larvae). The points represent cells, and the box-and-whisker plots
represent animal averages: long horizontal lines are medians, the boxes enclose the
second and third quartiles, and the short horizontal lines (whiskers) show the range. If
rebranching were simply due to spontaneous branching near the debranching loca-
tion (within + 2 pixels), then the probability of a spontaneous branch in a 15 min
recording time would be 0.07 (24 h, 106 nm pixel), 0.021 (48 h, 162 nm pixel) and
0.012 (96 h, 162 nm pixel), smaller than the observed probabilities. The differences
between ages are not statistically significant (one-way ANOVA, Tukey correction, 5%
level). e Time to rebranch at different developmental stages. (24 h: 71 rebranching
events from 6 larvae, 48 h: 22 events from 6 larvae, 96 h: 44 events from 6 larvae). Box-
and-whisker plots are defined as in (d). Spontaneous branching would lead to
apparent rebranching times of 300 min, 1000 min, and 1700 min respectively, much
longer than the observed times. The differences between ages are not statistically
significant (one-way ANOVA, Tukey correction, 5% level).

The fourth term —v;0n¢/d! in Eq. (1) and vs0ng /0l in Eq. (2) describe
how elongation or retraction physically shifts the dendrite densities at
a certain length. These terms are an extension of the Dogterom-Leibler
model of microtubule dynamic instability*® to three states.

The term K, (r, t)ng in Eq. (1) is an empirical collision term. Using
directed-rod simulations, we found the collision rate to be
Keoi(t) = [abp(t) + a?yDp?(t) | N1(t) /N (), where the first and second
term represents the advective and diffusive component of collision
(Methods: Fitting of collision parameters). Here, @ and y are two
empirically determined dimensionless pre-factors that depend weakly
on the dynamic parameters. Note that N(r,t)/Ng(r, t) is a normal-
ization factor to ensure all collisions occur in the growing state.

The terms with the transport operator R(r,8)= cos80, —
sin 6(1/r)0, in Eqs. (1) and (2) correspond to changes in radial position
and orientation due to branch elongation and retraction. A factor of V2
appears because the branch midpoints, where position and orientation
are measured, move at half the speed of the tips.

The boundary condition at length zero (/=0) is:
m
kp(r, )= / d6[ven(r,[=0,6,t) — fusny(r,1=0,6,0)]  (6)
-

The left-hand side is the rate of increase of the number of new
dendrites per unit area due to branching nucleation with rate k;, (per
unit length per unit time). The right-hand side is the rate at which these
newly formed dendrites move away from zero length less a
rebranching term, which effectively increases nucleation when a frac-
tion B =~ 0.2 (Fig. 3d) of shrinking branches switch to growing.

One-state model

Before describing the predictions of the three-state model, we first
present the results of a simpler one-state model where branches grow
with a constant velocity v without pause or shrinkage, and branches
disappear only by collision (Methods: “Steady-state solution of the
one-state model”). This corresponds to the limit where the state
transitions occur at high frequency. The solution (Table 2) shows that
the macroscopic mean-field properties of the arbor—number density
(N), length density (p), and mean length ({)—can be expressed simply in
terms of the microscopic properties of the tips—the branching rate
(ky), the velocity (v), and the collision frequency (a). For example, at
steady state, the branch birth rate per unit time (k/) is equal to the
branch death rate (5/[) due to collisions; therefore, the mean length is
[ o« /U/ky,. The predictions from the one-state model, however, do not
agree quantitatively with the data (red circles in Fig. 5a), showing that
stochastic transitions between the three states are, therefore,
important.

The three-state model predicts the observed branch lengths and
densities in the center of the arbor

To compare the model with the data, we obtained steady-state solu-
tions to the three-state model using the measured microscopic para-
meters in Table 1. Both numerical (Supplementary Fig. 4) and analytic
(Eq. (14)) solutions show that the steady state is reached in only a few
hours, being limited by branching, which has the slowest rate in the
system. Because this time is much shorter than the days-long devel-
opmental time, the central region can be regarded as being in a quasi-
steady state throughout development. With internal branches incor-
porated, the mean-field model predicts that the length distributions
are exponential, as observed (Fig. 2d). The exponential distribution is a
consequence of tip dynamics and collisions being independent of
branch length, so that branch survival is a Poisson process. The model
predicts the measured average dendrite lengths and length densities at
all developmental stages (Fig. 5a,b); the agreement is improved when
the rebranching is included. These agreements show that stochastic
dynamics accounts for the average densities in the central plateau
region.

The model predicts the parabolic relationship between number
and length densities
We found that, throughout development, the number density (V) is
approximately proportional to the square of the length density (p) in
the central region (Fig. 5¢). This approximately parabolic relationship
between N and p is predicted by the mean-field model (Fig. 5c, solid
curve, Methods: “Parabolic relation”) using the parameters in Table 1.
The one-state model predicts an exact parabola. The parabolic relation
was first found by Cuntz et al.*; importantly, our work shows that the
parabolic scaling follows from stochastic branching (without making
assumptions about optimal wiring that were made in the Cuntz
model*°).

Horizontal system (HS) cells in the central nervous systems of
Drosophila and Calliphora show a similar scaling relationship*’. Inter-
estingly, the data from class IV dendrites fall on the same line as the
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Table 1| Microscopic parameters associated with dynamic dendrite tips

Parameter Symbol Unit 24 h AEL 48 h AEL 96 h AEL Source
Branching rate ky, min~-pm~ 0.0082+0.0017 0.0016 +0.0007 0.0009 +0.0006 *
Growing speed Vg pum-min” 1.61+0.60 1.62+0.67 1.64+0.91 *
Shrinking speed Vg um-min™ 1.53+0.59 1.08+0.46 1.33+0.61 *
Transition rate kap min™ 0.784+0.036 0.933+0.044 0.923+0.034 *
Transition rate kgs min™ 0.640+0.033 0.435+0.030 0.799+0.032 *
Transition rate kpg min” 0.335+0.015 0.155+0.007 0.116 +0.004 *
Transition rate Kps min” 0.314+0.014 0.235+0.009 0.117+0.004 *
Transition rate ks min” 0.598 +0.033 0.282+0.022 0.575+0.027 *
Transition rate ksp min” 0.946+0.041 1.251+0.045 1.276 +0.040 *
Drift velocity v pum-min” 0.038+0.019 0.027+0.018 0.022+0.018 *
Diffusion D pum?min™ 0.5039+0.0443 0.2673+0.0691 0.0216 +£0.0332 **
Rebranching probability B - 0.19+0.04 0.17+0.05 0.19+0.02 rkk
Geometric factor a - 1.564 1.462 1.359 ol
Diffusion factor y 0.602 0.580 0.678 Hkk

The subscripts G, S, and P denote growing, shrinking, and paused states. The transition rate kgp denotes the rate of transition from the growing to the paused states. The errors are SEs except for the

branching rates and speeds, and rebranching probability which are SDs.

* Shree et al.”°. ** Calculated from the transition matrix (Methods). *** Fig. 3d. **** See text and Methods.

data from the horizontal-cell dendrites (Fig. 5d), which are also quasi-
two-dimensional. This raises the possibility that horizontal cells
develop by a similar tip-driven process.

Class IV cells have a small mesh size similar to regular polygonal
tilings

To quantify the space-filling properties of planar meshes, we defined
the mesh size as the diameter of a randomly placed circle that has a
50% chance of intersecting with a line in the mesh*. It is the median
size of the “holes” in the mesh. A similar concept to mesh size, termed
space coveragg, is defined by Baltruschat et al.*°. Class IV cells have a
mean mesh size of 4 um, which ranges from 2 um to 7 um over devel-
opment (Fig. Se, green circles). Because the mesh size is similar to the
diameter of the tip of the ovipositor (5um at its base*'), the geometry
of the class IV cells is well suited for the avoidance reflex: an ovipositor
barb has a>50% chance of making a direct hit on a branch.

As a benchmark for the economy of meshes, we calculated the
mesh size of regular tilings of the plane by triangles, squares, and
hexagons (Fig. 5f, left column). Unexpectedly, all regular tilings have the
same slope of 2 — +/2 =~ 0.59 when the mesh size is plotted against the
inverse of their length density (Methods: Tilings by regular polygons).
Class IV cells (Fig. 5e, green circles), agent-based simulations of class IV
cells® (Fig. Se, blue squares), and Voronoi tessellations (Fig. Se, purple
diamonds), all fall on the same line with slope 2 — /2. This means that
for a given total length of branches, these different tilings have the same
mesh size: they fill up the space equally economically. Equally spaced
parallel lines and directed-rod simulations (Fig. 5e, orange circles) have a
smaller slope of 0.5 and are, therefore, more economical, presumably
because they do not contain branch points. Other meshes are less eco-
nomical: randomly spaced parallel lines have a slope of In2 =~ 0.69, and
Delaunay triangulations have even larger slopes (Fig. Se, red triangles).

These comparisons show that the class IV arbors economically
cover the plane. Therefore, the bottom-up stochastic growth process,
governed by purely local rules, generates global structures with optimal
properties, similar to structures obtained using top-down design prin-
ciples such as regular polygons and minimal-spanning-tree models®.

The model predicts the arbor expansion speed and the decay
length of the moving front

To measure the arbor expansion rate, we fitted the arbor dia-
meter in the LR and AP directions with cubic polynomial

regression and calculated the slope at 24, 48, and 96 h (Fig. 6a).
The expansion speed, which is half of the slope, was larger in the
LR direction than in the AP direction (Fig. 6e), consistent with the
larger sizes of the cells in the LR direction (Fig. 1c-e). The speed
decreased from 0.03-0.05um/min at 24h and 48h to 0.01-
0.02 um/min at 96 h. These expansion speeds are 30- to 100-fold
slower than the “instantaneous” growing and shrinking speeds of
the tips, showing that the timescale of arbor growth is well
separated from the timescale of tip growth. To characterize the
front shape, we fitted an exponential curve, e~'/4, to the periph-
eral length density (Fig. 6b) to obtain the decay length A, which is
~4 um throughout development (Fig. 6f).

To predict the front speed (c) and decay length (1), we solved
Egs. (1)-(3) in a co-moving frame z = r — ct. To facilitate solution,
we made three well-justified assumptions in the distal front: we
omitted the internal dendrite density (because terminal branches
are in the majority), we dropped the collision term (because it is
second order in density, which is small), we set the radial transport
term (sinf/r)0/00 to zero (because it decays as 1/r). Using an
exponential trial solution, e~%/4, we obtained a constraint Eq. (16) on
the allowed values of ¢ versus A as shown in Fig. 6¢. The marginally
stable solution*’ ¢,,, must satisfy dc/d/l|c:cm =0. This condition pin-

points the emerging front speed c,, as the minimal speed along the c-1
curve, which corresponds to a singular solution for the decay
length A,,,.

The model’s predictions for the front speed and decay length are
shown in Fig. 6e, f. To validate these theoretical predictions, we also
solved the mean-field equations numerically (Fig. 6d, Methods:
Numerical solution): the theory and numerical solutions were in good
agreement (Fig. 6e, f). The predicted front speed aligns well with the
experimental values at 48 h. However, the predictions exceed the
measurements by approximately two-fold at 24 and 96 h. We believe
that the slower-than-predicted front speed at 24 h is partly due to
asymmetric growth: on the LR axis, growth preferentially takes place
towards the center line, reducing the expansion speed by roughly half
(Supplementary Fig. 5a). The slower-than-predicted front speed at 96 h
can be explained by dendrite expansion being limited by the diameter
of the segment, which grows more slowly than the arbor can expand
(Supplementary Fig. 5b). The predicted decay lengths are in good
agreement with the experiments at all developmental ages (Fig. 6f). In
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Fig. 4 | Mean-field model. a Schematic of a radially symmetrical class IV dendrite.
The red arrow shows the radial direction within the black-box region. b Zoomed-in
view of tip dynamics. Terminal branches (blue) transition between growing (green),
shrinking (magenta), and paused (orange) states. Branches are lost in two ways.
Either they collide with their base (Iength zero) in the shrinking state, or they collide
with another branch and disappear. New branches are born by spontaneous
branching or by regrowing following shrinkage to zero length (“rebranching”,
green arrowhead with radiating lines on top of a faded magenta arrowhead). [ and 6
denote branch length and radial angle, respectively. ¢ An example frame from the
directed-rod simulation. d Schematic of the mean-field model. Dendrite densities of
the growing (green), shrinking (magenta), and paused (orange) states are repre-
sented along the branch length axis with their corresponding colors. Dependence
of dendrite densities on radial angle, radial position, and time are omitted. Green
arrowheads represent the flow of growing dendrite density toward longer branch
lengths due to elongation. Magenta arrowheads represent the flow of shrinking
dendrite density toward shorter branch lengths due to retraction. State transitions
are shown by gray triangles perpendicular to the length axes. Collision-based dis-
appearance of growing dendrites is represented by black parallel arrows pointing
away from the growing length axis. Additionally, boundary fluxes from branching,
rebranching, and spontaneous disappearance are plotted at the left zero-length
boundary (/=0).

summary, our model semi-quantitatively agrees with the expansion of
class IV neurons, especially before tiling.

Length fluctuations increase the expansion speed

To determine how tip stochasticity impacts expansion, we calculated
how tip drift velocity (v) and tip diffusion (D) (calculated from the
transition rates, Methods: Drift and Diffusion) individually affect the
expansion speed (Fig. 7a). Expansion can occur even when the drift
velocity is less than zero (to the left of the vertical dashed line in
Fig. 7a), showing that fluctuations can drive growth. We calculated the
boundary in phase space that separates growth from no growth ana-
lytically (red line in Fig. 7a, Supplementary Fig. 6). The boundary curve
is a 2D generalization of the critical concentration in the Dogterom-
Leibler model of microtubule dynamics, which separates the regions of
bounded and unbounded growth. Our analysis shows that most of the
expansion speed of real neurons (black circle in Fig. 7a) can be
attributed to the fluctuations: if tip diffusion is reduced to zero (D =0),
the expansion speed would decrease roughly four-fold from
0.054 um/min to 0.014 um/min (V in Fig. 7a,b), equivalent to the one-
state model; whereas if the drift velocity is reduced to zero (v = 0), the
expansion speed would only decrease by 37% to 0.034 um/min (Il in
Fig. 7a, b). The influence of tip dynamics on expansion speed is illu-
strated by the directed-rod simulations in Fig. 7b (Supplementary

Table 2 | Predictions of the one-state model

Parameter Formula
Steady-state dendrite number den- N=2ky /(av)
sity (N)

Steady-state dendrite length den- p=(/2ky/V)/a
sity (p)

l=p/N=\/v]2k,
Number-length parabola N=ap?
c=v/2,A=0

See Table 1 for definitions of parameters. a =0.75 is the collisional prefactor for the one-state
model calculated from simulations (Methods). The factors of 2 in length and density reflect
correction for internal branches.

Average branch length (1)

Expansion rate (c), decay length (1)

Fig. 3b and Supplementary Fig. 7). In conclusion, fluctuations, which
are rectified by branching, play a major role in driving the expansion of
dendritic arbors.

The model predicts radial branch orientation

The branches of class IV cells tend to be radially oriented® (Fig. 2f-h),
especially internal branches. To understand this, we plotted the radial
orientations in the frontal and central regions of the arbor at 48 h AEL
(see data from other stages in Supplementary Fig. 8): within the frontal
region (gray area in Fig. 8a), there is a clear radial orientation of both
the terminal (blue) and internal (brown) branches (Fig. 8b). This is well-
accounted for by the model (Fig. 8b, solid line): the radial orientation in
the front arises because outwardly oriented branches grow fastest in
the radial direction (due to the cos 8 in transport term) and are less
likely to collide with other branches. In the central region, the model
predicts that the radial orientation of terminal branches is lost due to
isotropic branching, as observed (Fig. 8c, solid line). By contrast,
internal branches retain radial orientation in the center (Fig. 8c, brown
histogram); we propose that this is because the radial orientation of
frontal terminal branches is “locked in” when they convert to more
stable central internal branches. These conclusions are supported by
the simulations (Fig. 8d-f).

Discussion

Using a mean-field model, we have shown that the stochastic
dynamics of dendrite tips generates many of the morphological
properties of class IV da dendrites as they grow during
larval development. These properties include the exponential
distribution of branch lengths (Fig. 2d), the mean dendrite length
(Fig. 5a), the dendrite length density (Fig. 5b), and the approx-
imate parabolic scaling between dendrite number and length
densities (Fig. 5¢). It also predicts the tight spacing of the den-
dritic meshwork (Fig. 5e) and shows that they space-fill the seg-
ments as economically as regular tilings. The model accounts for
the radial orientation of terminal branches in the proximal
region and explains the radial orientation of internal branches in
the distal region if we make the additional, reasonable assump-
tion that the orientation of internal branches is locked in by
the branching process. Additionally, the model also shows that
stochastic dendrite dynamics accounts for the expansion of
the arbor and that fluctuations, caused by transition between
growing, shrinking, and paused states, increase the expansion
rate. Importantly, there are no free parameters: the microscopic
parameters suffice to specify the macroscopic dynamic
morphology.

The mean-field model provides analytic expressions of the
geometric properties in terms of the microscopic parameters. While
the analytic expressions are complicated for the full three-state
model, the one-state model gives simple formulae: the average
length is related to the branching rate (k) and the tip growth rate (v)
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Fig. 5 | The mean-field model predicts the steady-state branch lengths and
densities. a Experimental measurements (gray circles) of average branch length at
24 h (13 cells), 48 h (12 cells), and 96 h (9 cells) AEL. The means and standard
deviations are superimposed as vertical bars. The model predictions with
rebranching probabilities, B, varying from O to 1 are visualized by color-coded bars;
the measured value of 0.2 is indicated by the red rectangle. The crosses are the
characteristic lengths of the measured exponential distributions. Predictions from
the one-state model are shown in red circles. See Methods for statistical analysis.
b Measurements and model predictions of average length density. See (a) for
details. ¢ The parabolic relation between number density and length density. Each
point represents a different cell. The solid line is predicted by the model using the
parameters at 48 h AEL in Table 1. Parameters from 24 and 96 h AEL produce similar
results. d The same data are plotted on a log-log axis, together with data from
Horizontal System (HS) cells from Drosophila melanogaster and from the larger fly,
Calliphora erythrocephala*””. The model prediction is shown as the green line. The
linear fit to the class IV data is N, = apf,, with a=0.84 (+2SE range 0.69 to 0.98)
and p=1.84 (+2SE range 1.75 to 1.94). The fit to the directed-rod simulations
(shown as the black line) has a =1.03 (+ 2SE range 1.02 to 1.04) and p=2.01(+ 2 SE
range 2.01 to 2.02). e Mesh sizes for several tilings listed in the legend. The black
solid line corresponds to regular 2D tilings, while the lower and upper dashed lines
represent equally spaced and randomly spaced horizontal line patterns, respec-
tively. f Examples of tilings of the plane by regular and irregular shapes. All tilings
have the same length density. The red circles indicate the inscribed circles of the
polygonal tilings. The blue circles represent the characteristic mesh size, defined as
circles with a 50% chance of intersecting the branches.

by [=/0/2ky, the branch number density is proportional to k,, /v and
the arbor expansion rate is v/2. Such simple expressions illustrate
the benefit of the mean-field approach over the agent-based
approach.

There are two other important conclusions. First, because the
model contains no interactions with the substrate or other cells,
the morphogenesis of class IV cells can be accurately modeled by
a self-autonomous process. The one exception is that signals
arising from the adjacent endothelium restrict the cells to their
segments’®, so that growth is slowed after 48-72 h, when tiling is
complete. Extracellular cues have been shown to be important for
dendrite morphogenesis in other cells, such as Purkinje cells™. We
expect these external signals will add complexity to the sto-
chastic dendrite growth model by making the dynamics depen-
dent on location within the arbor. Second, because the mean-field
model has no topology (the arbor is a set of disconnected rods),
hierarchical branching mechanisms, as postulated by Baltruschat
et al.’°, are not necessary in the determination of class IV dendrite
geometry. This is an important feature of the mean-field approach
that distinguishes it from agent-based models®, which are
inherently topological. In summary, we have shown that sto-
chastic tip dynamics is an economical and rapid space-filling
mechanism for building dendritic arbors, without external gui-
dance or hierarchical branching mechanisms. Our model provides
a general theoretical framework for understanding how macro-
scopic branching patterns emerge from microscopic dynamics.

Our findings are expected to generalize to other arbors because
the branching, elongation, and retraction mechanism (including
contact-based retraction) has been observed in many other neuronal
types (see references in the Introduction), though the specific para-
meters of dendrite growth will lead to cell-type dependent morpho-
logical variations (https://neuromorpho.org®®). However, there are
important differences between class IV arbors and the arbors of other
cells that restrict the general applicability of our model. For example,
hierarchical branching is certainly important in other cells. Drosophila
Class Il da neurons have actin-rich branchlets along the backbone of
their dendrite?®**** and grow by a back-bone first mechanism?. The
branchlets may be analogous to the dendritic spines of vertebrate
neurons such as Purkinje and pyramidal cells. The mean-field model
could be generalized by adding an additional class of branches that do
not themselves branch and that spontaneously transition (cata-
strophe) to a long-lived shrinking state. The number would depend on
the branching rate, and the average length would equal to the growth
rate divided by the catastrophe rate. Embryonic Drosophila class 1
cells’** and C. elegans PVD sensory cells® have a clear hierarchy of
primary, secondary, and tertiary branches.

The present model and the agent-based model of Shree
et al. % are inherently two-dimensional; direct cell-cell collisions
take place when the growing dendrite and the target dendrite
grow on a 2D surface, as is the case for class IV dendrites®. Col-
lision is crucial because it provides negative feedback that keeps
the dendrite density finite. In 3D, however, direct collisions will
be much rarer because a growing line has a zero probability of
colliding with a fixed line. While dendrites have non-zero thick-
ness, the collision rates will still be very small, and a contact-
based retract mechanism alone would lead to densities much
higher than observed. Therefore, if a collision-based retraction
mechanism were to operate in 3D, the effective size of the
growing tip would need to be increased. This could be done by
using filopodia, actin-based structures, to reach out from the
growing tip and detect nearby dendrite branches. Filopodia are
well known in the growth cones of axons, and also found in ver-
tebrate dendrites'" and adult fly dendrites®*, though not in larval
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class IV dendrites. Morphogens that can diffuse through the tis-
sue could also provide signaling cues that lead to retraction in 3D.
Thus, generalized contact-based retraction mechanisms might
restrict dendrite density during the development of 3D arbors.

Our model provides molecular insights into dendrite mor-
phology. Given the importance of branching for function, there
has been a large effort to identify the molecular mechanisms
underlying the formation, growth, and stability of dendrites
during development*'***"*, Altered dendrite morphology often
occurs when the expression of cytoskeletal, membrane-traffick-
ing, and cell-adhesion molecules are perturbed. However, the
mechanisms by which these perturbations alter dendritic geo-
metry (e.g., branch length and density, arbor size) are not known.
Our work establishes a morphogenetic “pathway” that causally
links tip properties to arbor geometry. This reduces the
genotype-to-phenotype problem to finding the molecular
mechanisms that determine the dynamical properties of the
dendrite tip. The model can then be used to extrapolate mole-
cular perturbations of tip dynamics to those of the whole arbor,
as demonstrated above using the one-state model to relate tip
branching and growth to average branch length and density.
Thus, the model generates etiological hypotheses.

We give a few examples. The Drosophila microtubule-associated
protein minispindles (msps) is member of the chTOG/EXMAP215 family
of proteins that accelerate microtubule growth®. If microtubules play a
role in dendrite growth, we might expect that knocking down msps
would slow tip growth, leading to shorter dendrites, a lower dendrite
number density, and slower dendrite expansion (Table 2). By contrast,
the kinesin-family proteins kinesin-8 and kinesin-13 are microtubule
depolymerases that increase the catastrophe rate of growing
microtubules®. Again, if microtubule dynamics drives dendrite dynam-
ics, then we expect that knocking down the Drosophila members of
these kinesin subfamilies will decrease the transition of growing
microtubules to shrinking ones, leading to the opposite phenotypes to
msps knockdown. Perturbations of actin growth®, endocytosis®’, and
lipid metabolism®* perturb morphology, and the models discussed here
make hypotheses for how they might affect the tip parameters, which
can be tested experimentally. Thus, a morphogenetic “pathway” can be
used to interpret molecular phenotypes.

Dendrite growth shares features with branching morpho-
genesis in other biological systems. A clear analogy is with
cytoskeletal networks. Our model generalizes the 2-state Dog-
terom-Leibler model of microtubule dynamic instability* by
adding extra states, branch formation (which is observed for both
actin filaments® and microtubules®®), and collision-based retrac-
tion. Our model generates radial expansion of dendritic networks
similar to the traveling-wave-like expansion of microtubule
arrays®”°s, Therefore, our model is likely to be a useful general-
ization for describing cytoskeletal arrays.

Our model may also prove useful for analyzing the branching of
tissues, which is also driven by dynamic structures. While branching is
highly stereotyped in the lungs® and kidneys™ and less stereotyped in
insect trachea”, branching in other tissues such as mammary glands, is
highly variable, reminiscent of neurons™. In mammary glands, the lead-
ing front of branch tips has been described as a “branching engine... that
initiates, directs, and maintains branch outgrowth... during development
and regrowth””. This description aptly describes dendrite tips as well.

Methods

Fly Stocks and maintenance

The fly line;;ppk-cd4-tdGFP (homozygous) was used to image class IV
dendritic arborization neurons and was generously provided by Dr.
Chun Han (Cornell University). Fly crosses were maintained in Darwin
chambers set at 25°C, 60% humidity with a 12 h light/dark cycle.

Embryos were collected on apple-agar plates, with a large drop of yeast
paste placed at the center to stimulate egg-laying.

Sample preparation

For larval imaging, larvae at 24, 48, 72, 96, and 120 h AEL were washed
with 20% and 5% sucrose solutions, anesthetized using FlyNap (Car-
olina Biologicals, Burlington, NC, USA), and transferred to apple-agar
plates for a 1-5min recovery. Post-recovery, larvae were carefully
positioned dorsal side up on a 1% agar bed affixed to a glass slide and
imaged in a drop of 50% PBS and 50% halocarbon oil 700 (Sigma
Aldrich). To immobilize larvae, a 22 mm x 22 mm coverslip lined with
Vaseline or vacuum grease was gently pressed over them.

Imaging

Samples were imaged using a spinning disk confocal microscope,
specifically a Yokogawa CSU-W1 disk (pinhole size 50 um) integrated
into a fully automated Nikon TI inverted microscope with perfect
focus. Excitation was achieved using a 488 nm laser at 18-21% power,
and imaging was performed with either a 40X (1.25 NA, 0.1615-micron
pixel size) or 60X (1.20 NA, 0.106-micron pixel size) water immersion
objective. Images were captured with an sCMOS camera (Zyla 4.2 Plus)
and processed using Nikon Elements software. Prior to imaging, sam-
ples were manually focused to identify abdominal third and fourth
segment (A3 or A4) neurons.

For density analysis, static images were acquired using a 60X
water immersion objective for 24 h larvae and a 40X objective
for later stages. Images were stitched using ImageJ. Image processing,
including segmentation, skeletonization, and density measurements
were conducted using in-house MATLAB algorithms whereas”
branching/rebranching analysis was done manually using ImageJ®.
For branching/rebranching and tip dynamics full-frame (2048 x 2048
pixels) movies with duration 15-30 min were acquired, containing
6-12 sections (-1 um per section) collected at 4-6 s intervals.

Rebranching probability ()

We located the disappearance of a retracting branch (a debranching
event) and defined a rebranching event as the appearance of another
branch within +2 pixels over the course of a 15-20 min recording.
Rebranching usually occurred within 5min (Supplementary Fig. 1e),
which is much shorter than the time expected if the new branched
were formed spontaneously, given the branching rate in Table 1. The
rebranching probability, B, is the number of rebranching events divi-
ded by the number of debranching events.

Densities in the central region

We calculated the dendrite number and length densities at different
developmental stages from skeletonized images. First, the neurons are
aligned in the AP and LR direction and then binarized using an in-house
MATLAB algorithm. Second, the binarized image was skeletonized
using the MATLAB function ‘owmorph’. Assuming, the mass of
the dendrite skeleton is uniformly distributed in a rectangle, we
determined the neuron widths in AP and LR directions as
212
Dpp=v12RS andD,y = VI2RE, where Ry= (4>, (rj - f) ) is the
radius of gyration. N is the total number of occupied pixels in the
skeleton, r; is the projection onto the respective axis of the /" occupied
pixel and r is the position of the center of mass. To calculate the
densities in the central region, we removed the peripheral 5% of the
neurons from all four sides. We calculated the total branch length and
number of tips in this trimmed region and normalized these values by
the containing area to calculate the branch length and tip densities®.
To calculate the densities in AP and LR directions (as shown in Fig. 1f,g)
the total skeletal mass was projected on these axes and subsequently
normalized by the pixel length.
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d Numerical solutions of the dendrite density at 1600 min from an initial isotropic
sigmoid front of radius -10 um. The computation uses parameters at 48 h AEL. e,
f Front speed and front decay length from measurements along AP and LR axes,
theoretical predictions, and numerical solutions at 24, 48, and 96 h AEL. All errors
are standard deviations. Those for the theory are estimated by bootstrapping
(Methods: Statistical Analysis).

Mesh size

We defined the “mesh size” of a network of lines (branches) as the
diameter of the circle that has a 50% chance of intersecting a branch*.
To measure the mesh size, we randomly generated N e = 5000 cir-
cles with a diameter (D) and randomly placed them within the network.
If a circle overlaps with any part of the network, we consider it as a
“hit”, with number Ny;.. The hitting probability is Pp;.(D) = Nyic/Neircle-
By systematically calculating the hitting probability as a function of the
diameter of hitting circles D, we determined the mesh size, M, such
that P,;;(M)=0.5. For very small diameters of the hitting circle, the
hitting probability is close to zero. We extensively validated our
method using the regular lattices: triangular, square, and hexagonal.
As expected, the measured mesh size as a function of sparsity (inverse
of length density) for these regular lattices fell on a line with a slope of
2-v2~0.59, which can be calculated from the geometry. We also
measured the mesh sizes for equal-spaced horizontal lines (expected
mesh/sparsity=0.5), for exponentially-spaced horizontal lines
(expected mesh/sparsity =In2=0.69), for Voronoi tessellations and
Delaunay triangulation of random points, and minimum spanning

trees (MSTs) using the Trees Toolbox®, varying the balancing factors
(bf) from 0 to 1. Some of these results are plotted in Fig. 3e, along with
the mesh sizes of class IV dendrites and simulated dendrites using the
one- and three-state models.

Front velocity (c) and front decay length (1)

The arbor diameter was determined by measuring the radius of gyra-
tion for each neuron along the AP and LR axes at 24, 36, 48, 72, 96, and
120 h AEL. We assumed that growth started at 16 h after egg lay from a
soma size of 10 um. The expansion speed was estimated from the slope
of the best-fit cubic curve to the diameter data divided by 2. To get an
average front profile at 24, 48, and 96 h AEL, dendrite length densities
from individual neurons were normalized to and aligned at 10% of their
central plateau values. We measured the decay length by fitting an
exponential curve to the average dendrite length density from the
outermost edge to where the density falls to 25% of its steady state.
Standard errors are obtained with bootstrapping.

Radial branch orientation

The radial orientations of dendritic branches were measured at the
branch midpoint. A straight line drawn from the soma to the branch
midpoint defines the radial direction. Another line was fitted through a
1um segment near the branch midpoint to represent the tangential
branch direction. The radial angle was measured from the radial
direction to the branch direction, with positive angles conventionally
defined in the counterclockwise direction.

Statistical analysis

We performed ordinary one-way ANOVA tests with Tukey’s correction
for multiple comparisons (Figs. 3d, e and 5a, b) using GraphPad Prism
(version 10), considering the number of animals as the sample size with
5% significance level. Only significant comparisons (p<0.05) are
reported in the figures. All data presented in Figs. 3d, e and 5a, b
satisfied the normality test.

To calculate errors in front velocity measurements (Fig. 6a, e), we
employed a bootstrapping method. We randomly sampled a mea-
surement for arbor diameter at each time point, using which we cal-
culated the front velocity from cubic regression. This process was
repeated 1000 times to generate a distribution of front velocity esti-
mates. The errors in the mean-field predictions and numerical solu-
tions for the front velocity and front decay length were also obtained
from bootstrapping (Fig. 6e, f). We used the measured mean values
and standard errors of the dynamic parameters to generate 1000 sets
of parameters. From these, we calculated the corresponding dis-
tributions of front velocities and decay lengths, allowing us to deter-
mine the uncertainty in our theoretical predictions and numerical
solutions.

Directed-rod simulations

Simulation of the steady-state density. A square box of size L (200
pm) with periodic boundaries was initialized with N; rods whose bases
(xb, ¥?) were randomly and uniformly distributed within the box. The
individual rods were assumed to be infinitely thin straight line-
segments growing in random direction 6; € [0,2m]. The growing ends
of the rods (tips) stochastically transition between growing (G),
shrinking (S) and paused(P) states with experimentally measured rates
(kyj jxic(c,s,p)) from Table 1. We divided the simulation time into small
steps At and implemented a standard ‘Monte-Carlo’ method such that
the total probability of a transition in the time interval is
P;=1— e k=it where ktot is the sum of the transition rates from one
particular state: k,,, = Z, .s,pkij- Subsequently, P; is compared with
a uniform random number R(0, 1) to implement the transition. If there
is a transition, it happens maintaining the ratio k;/k.. After the
transition, the tip is assigned with corresponding mean state velocity
(V. Vs, Vp). We calculate the length of the tips at time ¢ as follows:
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L) =1t — At)+ Vg s p)AL, Where Vg s p) is the mean velocity in the
growing/paused/shrinking states. The end points of the rods are given
by: x(t) =xP + [;(¢) cos(6;) and yi(t)=y> +1,(¢) sin(6;) where, xi(¢) and
Yi(t) represents the end-point location of the i tip and 6; is the ran-
dom angle associated with the tip. In the simulations, we assumed that
the rods disappear instantaneously after collision, consistent with our
experimental study showing that after collision the branches shrink®.
The lateral branching of the dendrite tip is conceptualized in our
model as formation (birth) of a randomly oriented nascent branch at a
random location within the simulation box (green arrowhead in Sup-
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Fig. 7 | Length fluctuation increases arbor expansion speed. a Phase diagram of
front speed as a function of the tip drift velocity (x-axis) and effective diffusion
coefficient (y-axis). The black circle corresponds to the measured average tip speed
at48 h AEL. The error bar represents the standard error in tip speed at 48 h AEL. The
black curve represents the contour of constant front speed passing through the
black circle. The red curve indicates the phase boundary, which represents a
threshold below which the arbor cannot grow. b Simulated arbor sizes after
1000 min using different mean tip velocities and length fluctuations indicated in
(a). I: data at 48 h. II: zero average tip speed. III: increased average tip speed. IV:
Increased fluctuations. V: Decreased fluctuations. The color code represents nor-
malized dendrite density. Representative directed-rod simulations are super-
imposed. See growth dynamics of these simulations in Supplementary Fig. 7.
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Fig. 8 | Radial orientation of dendrite branches. a The dendrites are separated
into frontal and central regions. The same skeletonized neuron as in Fig. 2b is
shown (48 h AEL). b, ¢ Radial-angle distributions of terminal and internal branches
at 48 h AEL within the frontal and central regions, respectively. The black curves
represent mean-field predictions using 48-h parameters, agreeing with the
terminal-branch distributions. d The radial orientation of dendrites computed

plementary Fig. 3a). We used experimentally measured branching rate
ky, (um™ min™) to nucleate new tips in the system”. To implement this,
we visit all the existing tips and calculate the branching probability
PP =1— e-lkAt for individual tips. We then, compare a uniform
random number with the branching probability P}’ to nucleate a new
tip at a random location within the box.

Simulation of the expanding front. The system is initialized by uni-
form nucleation of N;;; number of tips within a circular region of dia-
meter D,,; (Supplementary Fig. 3b). Simulation of tip dynamics follows
the same rules as in the case with periodic boundary conditions,
except branching. New branches (green arrowhead) are nucleated at a
random location on the circle passing through the midpoint of the
mother branch.

Fitting of collision parameters

The dimensionless pre-factors a and y in the collision term were
determined from the directed-rod simulations. «a is a geometric pre-
factor. y is a diffusion pre-factor that reflects the likelihood of tip
collision before shrinking to its base The collision rate, defined by the
total number of collisions per unit time normalized by the total num-
ber of branches, was calculated at several different branching rates &,
ranging from 0.0005 to 0.01 min™um™ (Supplementary Fig. 3c). The
three-state collision rate depended quadratically on the length density
and the fit to avp + a>yDp?* was used to estimate a and y (Table 1). The
one-state collision rate depended linearly on p (Supplementary
Fig. 3c), the a pre-factor value of which is fitted to be a; =0.750. The
Péclet number, defined by the ratio of advective to diffusive collisions,
is plotted for the three-state simulation is on the order of 1 (Supple-
mentary Fig. 3d). The simulations recapitulate the parabolic relations
between number density and length density (Supplementary Fig. 3e).

Tilings by regular polygons
For tilings by triangles, squares and hexagons of side [, the mesh sizes

are [(1-1/v2)/v/3, [(1-1/+/2), and [/3(1 —1/+/2)/2 respectively.

Center

-Tt/3

-Tr/2

from directed-rod simulations is visualized by the order parameter sz"ilemi /M ‘
(zero corresponds to a uniform radial distribution). The left and right halves
depict, respectively, the order parameter from the mean-field theory and the
directed-rod simulations. The right half is overlaid with a representative config-
uration snapshot from the simulation. e, f The directed-rod simulations (histo-
grams) align closely with the mean-field theory (solid line).
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The respective length densities are (2v/3)/I, 2/I, and (2/v/3)/L
Remarkably, the ratios are 2 — +/2 for all three.

Dendrite tip drift velocity (v) and diffusion coefficient (D)
The tip drift velocity v and tip diffusion D were calculated from the six
transition rates k; and two tip velocities vg and vg (Table 1). The
steady-state probabilities of the tip being in the growing, shrinking,
and paused state are: Pg = (kpgksg + Kpgksp + kpsksg) /P, Ps = (Kgskpg +
kepkps +Kgskps)/P and Pp=(Kgpksc + Kgpksp + Kgsksp)/P where P =
kpcksg +Kpoksp + Kpsks + Kskpg + Kgpkps + Kskps + Kepksg + Kgpksp +
kgsksp is a normalization factor. The drift velocity is: v = Pgug — Psus.
The diffusion coefficient D was calculated using the Green-Kubo
relation, which simplifies to D= [’ |(v(t+t)u(t)), — 0*|dt at the
steady state”. The first term in the integral (v(t + t')u(¢')), 1s the auto-
correlation function of the tip velocity. Making use of the Markov
property and ergodic hypothesis, it can be shown that
(UE+E€W(E))y =31 jec,s,mUiliPE E1J, 0)P; where P(i,t|j,0) is the
conditional probability that the tip is in state i at time ¢ conditioned on
it was initially in statej at time 0. The expression for P(i, t|j, 0) can be
found explicitly by solving the linear equations of state transition:

dpP — (ks +kgp) ks kpg
ar =KP, K = kes — (ksg +ksp) kps
kep ksp —(kp + kps)

@)

The transition rate matrix Kz has three eigenvalues, one is zero,
whose eigenvector can be the steady-state probability
Wi =P{ = (P, Ps,Pp). The other two eigenvalues are both
negative, denoted by —A; and —A,, with their corresponding
eigenvectors as w;wl and w,. By decomposing an initial probability
in state j PYPOj as PY =Pg+a’'w;+a’'w,, the distribution
probability at time ¢ becomes P(t)=Pg+a'we it +a'w,et.
Hence the conditional probability can be written as P(i, ¢, |j, 0)=P; +
aPw, et +aw, e As a result, the autocorrelation function

becomes (u(t+tW(t), =0+, icc.smUiliP) (a(lj)wly e +aw,
e~%t). After taking the integral in the Green-Kubo relation, the diffu-
sion coefficient satisfies D=3"; ;. s pyVil;P; (agj)wl, SN +aw, //12> .
These calculations were checked by simulations.

Steady-state solution of the three-state model

To determine the homogeneous steady-state solution, we begin by
setting all time derivatives and spatial transport terms to zero in Eqgs.
(1-3). By expressing np in terms of ng and ng using Eq. (3), we reduce
the system to a two-dimensional matrix equation for n; and nq:

ng KeoXep  Kos  KeoXsp i Ksg ng
d _ Ug e Vg Vg @)
a\ _Kos Ksc n
s vs vs S

Here Xcp=1+kcp/(kpg +kps), Xsp=1+ksp/(kpg+kps), Kos=
kas + kepkps/ (kpg + kps), and Ksg =ksg + kspkpe / (Kpg + kps). The coef-
ficient matrix, denoted by K, has two real eigenvalues of opposite
signs, as indicated by its negative determinant. Since n; and ng must
asymptotically approach zero as [ — oo to be physically meaningful,
the positive eigenvalue should be discarded. Denoting the negative
eigenvalue as —|v|, the solution takes the form as
ng(h)=ng(0)exp(—|v|l) and ng(l)=ng(0)exp(—|v|l). These solutions
reveal that the growing and shrinking branches follow exponential
length distributions with a characteristic mean length of [=1/|v|. The

vector [ng(0), ns(0)] "is an eigenvector corresponding to the eigen-
value —|v|. By combining the eigenequation with the boundary con-
dition Eq. (6), we can derive explicit expressions for n;(0) and ng(0) in
terms of p,,, and [:

Ksg+vs/l

ng(0)= _
«©@ KscUg — BKgsvs +ugus /1

KpProt » %)

KGS

ns(0)= =
Ksgbg — BKsvs +ugus/l

KpProt- (10)

Substituting the expressions for ng(0) and ng(0) derived above
into the definition of total length density p=2[gdll[ng(l)+
ng(l)+np(l)] and canceling p,,; from both sides, we obtain a self-
consistent cubic equation for [:

an

where A, B, and C are given by A=K /vs — fKs/Vg, B=2kpXcp/Vs,
and C=2ky, (xcpKsg + XspKgs)/Usls- The cubic equation has a single
positive root, corresponding to our desired value of [. The dendrite
length density p can be further obtained from the following quadratic
equation derived from det(K +1/[) =0 (where I is the identity matrix):

v 1+ (Ksc/vs — Kgs/vg)!

- -
XePl+ (Ksg/vs +XspK s /XcpUs)!
The total dendrite number density is given by Ny, =y /1.

- 2.2 _
AUPyo; + VYDA Py =

12)

Steady-state solution of the one-state model

In the one-state model, branches grow with a constant drift velocity v
without fluctuation and disappear only by collision. This corresponds
to the limit where the state transitions occur at high frequency.
The mean-field equation reduces to 0,n(r,1,0,t)= — avpy,
(r,t)n(r,1,0,6) —von(r,1,0,t) — vR(r,O)n(r,1,0,t)/2 where the sub-
scripts refer to partial differentiation. In the homogeneous isotropic
steady state, the dendrite density only depends on branch length [.
Thus, we can denote dendrite density as n(l) by keeping only the
length variable. Consequently, the one-state equation reduces to
on(l)= — ap.,n(l). Here, p,, can be regarded as an unknown constant
(independent of branch length /) that the total length density reaches
at steady state. The solution is therefore n(l)=n(0)e-*w!, Following
the definitions for the total number and length density by taking the
zeroth and first moments, we obtain two relations: N, = 2n(0)/(ap.o;)
and p,, =2n(0)/(ap,o)*- This gives the parabolic relation Ny, =apZ .
The average branch length is [=1/(ap,,,). In the absence of shrinking
branches, the boundary condition at length zero (/=0) requires
a balance between new tip generation and transport by drift
velocity: kpp.or(£)=0n(l=0,t). Substituting n(0)=a?p} /2 (re-writing
Drot =2n(0)/ (aptot)z) into the boundary condition, we find that

Peot = /2Ky, /0)/a and [ = \/0/2k,. These relations are summarized in
Table 2.

Relaxation time to the steady state of the three-state model

By introducing sudden changes in the parameter sets at 48 and 96 h
AEL, we observed relaxation times of 1-4 h from numerical solutions of
Eqgs. (1-3) (Supplementary Fig. 4a—c). This timescale is much shorter
than the durations of the three larval stages, which are 1 or 2 days. We
also varied the microscopic parameters linearly from 24-48 h and
48-96 h. As expected, the numerical solutions closely followed the
steady-state curve calculated by the parameter set at each time point
(Supplementary Fig. 4d-f). This suggests that the dendritic branch
density in the center of the arbor can be considered to remain in steady
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state throughout larval development. Furthermore, we found that the
one-state model equilibrates on a timescale similar to the three-state
model (Supplementary Fig. 4g-i), indicating that the relaxation beha-
vior is primarily affected by branching and collision rates, rather than
tip transition dynamics, which equilibrate within minutes.

Time-dependent solution of the one-state model

To solve the time-dependent solution, we reformulate the one-
state equation to the governing equations of the branch
number density dN;/dt=kypr —avptNy and length density
dpr/dt=0N — avp?. These equations can be derived by taking
the 0™ and 1% order moments of [ on both sides of the one-state
equation 9,n(l,t)= — avprn —vo;n. Given the average branch
length [ = p;/N7, quite surprisingly, we found that [ satisfies an
autonomous differential equation.

d_i—%i_pi%—y_kiz
dt dt Ny N2 dt b

13)
which is independent of the geometric pre-factor a. Solving the
equation analytically yields that:

() — Lss| = g2kt l(t=0) — I 14)

l(t) +1ss l(t=0)+Igs

Here SS denotes steady state. The characteristic time scale is

1=1/2,/k,D = 1/(2k,lss), which is about 28, 76 and 112 min for 24, 48

and 96-h AEL parameter set. In retrospect, 1//k,0 produces the only
timescale from the viewpoint of dimensional analysis.

Parabolic relation between dendrite number density and length
density

In the limit of small length density p,, and long average branch
length [, the _right-hand  side of Eq. (12) simplifies to
(KscU — Kasvs) /L (XapK s + XspKas) = (Pvg — Psvs) /[=v/L. I the
second-order diffusive collision term on the left-hand side of Eq. (12) is
left out, one arrives at ap,,, =1/I with  canceled out from both sides.
Coupled with [ =p,o, /N, it becomes evident that N, = apZ,, which is
identical to the parabolic relation between dendrite number density
and length density derived from the one-state model.

Traveling wave solution for the expanding arbor
With an exponential ansatz e~2/A in the co-moving frame z=r — ct, one
can rewrite Eqs. (1-3) as follows:

cosf 1 /c Kg(c, A
9 ("G) N Ay GP(Cr/l)+KGS(CVA)) % ("G)
ol - Kgs(c, D) cosf 1
ng *GST 7*;5(71)(5#6’,/1)*’(50(5'/1)) ng

as)

Here, we modified the notations of ygp, Xsp, Kgs, and K¢ to
incorporate the dependence on front velocity ¢ and decay length A:
Xop(€, ) =1+kep/(c/A+kpg+kps), Xsp(C,A)=1+ksp/(c/A+kpg +Kps),
Kgs(c,A)=kes +kcpkps/(c/A+kpg +kps), and Ksg(c,A)=ksc +kspkpg/
(c/A+kpg +kps). Notice that we have left out the internal branch
density near the dendrite periphery, the collision term K (r, t)n; as a
higher-order density term, and the radial transport term (sin 8/r)00
due to its 1/r decay. The eigenvalues g, of Eq. (I15) are

q. = cos0/21+ P(c,A) = 1/ P*(c, 1)+ Q(c,A), where we define P(c, ) =
[Xsp(c, Mc/A+ Ksg(c, )] /2vs — [Xcp(c, ADc/A+Ks(c, D] /2vs and Q(c,
) = [xsp(c, Dc/A+Ksg(c, D] [Xgp(c, Dc/A+Ks(c, D) /ugvs — Ksg(c, A)

Kcs(c,A)/vgvs. Considering P+4/P*+Q>0 since Q is positive, the

larger eigenvalue g, must be discarded. Otherwise, g, can be posi-
tive for some values of 6, resulting in unrealistic divergence of branch
density as branch length [ approaches infinity. With g_ being the only
permissible eigenvalue, the branch densities n; and ng can be
expressed by ng(z,[)=ng(0)e?--2/* and ng(z,[) = ns(0)e?--2/1, Inte-
grating over [ and 0 as per Eq. (5), we could express length density p in
terms of ng(0), ng(0), xgp(c,A), xsp(c,A), P(c,2), and Q(c,A). One can
eliminate p with the boundary condition in Eq. (6) and obtain a
fractional constraint on ng(0) and ng(0). Meanwhile, this ratio

[ng(0), nS(O)]T constitutes an eigenvector corresponding to eigen-

value g_. Eventually, we arrived at a condition where the only
unknown variables are the front velocity ¢ and decay length A.

[ /Pz(c 1) +Q0c 1) +Ric A)} [1 B kb)(GP(c,/l)M(c,)l)] _ Kgs(c,A) [ . kypxsp(c, YM(c, /1)]
§ ’ ’ v v v

S

(16)
Here  R(c,A) = [xsp(c, /A +Ksg(c, D]/ 205 + [Xcp(C, /A +Kgs
(¢, )]/2vg and M(c,A) = [y/P(c,))* +Q(c,A) —

P(c, D/I(/ P(c, 1> +Q(c,A) — P(c,A))? —1/4A*1/ for ease of expres-
sion. The linear spreading velocity c,, is further determined with the
stability condition*’ dc/dA|C:Cm=O by finding the minimum of ¢
numerically with the MATLAB function ‘fmincon’ constrained by
Eq. (16).

Phase boundary

The phase boundary (red curve in Fig. 7a and Supplementary Fig. 6)
divides the phase diagrams into two regions: one where growth is
permitted, and another where no growth can occur. The critical tran-
sition is set forth by a positivity requirement of Eq. (12), that
1/1+Kg/vs — Kgs/vg on the right-hand side must be greater than
zero. Accordingly, one canset 1/l =K /v — K /s in Supplementary
Eq. (5) to locate the phase boundary curve.

nfip-t) nfie o)

Ug Us Ug Us

a7

Traveling wave solution of the one-state model

In the co-moving frame z = r — ct, the one-state model can be written
as on(z,1,0)= — (c/v—cosB/2)n(z,1,0)/A with the exponential
ansatz e~%/4, ignoring second-order collision term. Thus, the solution
satisfies n=n(0)e " where |v|=c/vA — cos 6/2A. Taking the integral
over [ and 6, along with the boundary condition, we arrive at condition
that relates 1 to c:

1s8)

When 0<c<v/2, A is negative hence must be discarded; when
c>v/2, there is always a single positive value of A that satisfies Eq. (18).
Consequently, the marginally stable solution c,,, which satisfies
dc/d/l{c=cm =0, is ¢, =v/2 where A, =0. The equivalence of the front
velocity to the midpoint drift velocity indicates that the one-state
expansion is driven exclusively by the elongation of the radial bran-
ches within the leading edge. This growth mechanism is predicated on
the persistent extension of these subpopulation of branches, which
accounts for the sharp density cutoff at the boundary, i.e. the front
decay length being zero.

Numerical solution
For ease of computation, we reduce the system dimensions by
taking the Oth and 1st order moment of Eqs. (1)-(3) with respect
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to [. This doubles the number of equations to 6 but eliminates [ as
a variable. We discretize radial distance r and radial angle 6 from
(0,100] and [—m, ] with a 200 X100 mesh. After each time step of
0.05min, a new set of values are updated using backward Euler
method.

Data availability
The data used in this study have been deposited in Dryad database
under accession code https://doi.org/10.5061/dryad.djh9wOw2r.

Code availability
The code for directed-rod simulation is publicly available at https://
github.com/SabyasachiSutradhar/Directed_Rod_Simulation.
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