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We study the energy cost of flocking in the active Ising model (AIM) and show that besides the
energy cost for self-propelled motion, an additional energy dissipation is required to align spins in
order to maintain the flocking order. We find that this additional alignment dissipation reaches its
maximum at the flocking transition point in the form of a cusp with a discontinuous first derivative
with respect to the control parameter. To understand this singular behavior, we analytically solve the
two-site AIM model and obtain the exact dependence of the alignment dissipation on the flocking
order parameter and control parameter, which explains the cusped dissipation maximum at the
flocking transition. Our results reveal a trade-off between the energy cost of the system and its
performance measured by the flocking speed and sensitivity to external perturbations. This trade-
off relationship provides a new perspective for understanding the dynamics of natural flocks and
designing optimal artificial flocking systems.

Understanding how collective coherent motion (“flock-
ing”) emerges from a system of self-propelled, interacting
individuals has been a central question in nonequilibrium
statistical physics and biophysics [1–3]. Familiar exam-
ples include birds, fish, bacteria [3, 4] and synthetic sys-
tems such as active colloids [5]. Theoretical studies have
involved models of self-propelled, aligning particles with
continuous [6–10] or discrete [11, 12] symmetry. Despite
their diversity, these systems are all far from thermody-
namic equilibrium [13] and thus a continuous dissipation
of free energy is required to create and maintain the long-
range flocking order. Indeed, energy dissipation plays a
crucial role in driving living systems out of equilibrium
to achieve important biological functions, such as adap-
tation [14], error correction [15–20], and temporal oscil-
lation [21]. In this paper, we study the nonequilibrium
thermodynamics of dry aligning active matter [22] aiming
to elucidate the relationship between the energetic cost
of flocking and its performance measured by the flocking
speed and sensitivity.

The flocking dynamics can be studied at the micro-
scopic level by prescribing the single-particle dynamics [6]
or at the coarse-grained level with hydrodynamic field
theories [7, 8]. In the latter case, irreversibility is mea-
sured by the information entropy production rate [23–25],
but its connection to the heat dissipation rate is usually
lost unless thermodynamic consistency is ensured, for in-
stance, by relying on linear irreversible thermodynam-
ics [26]. The energy dissipation also depends on coarse-
graining [27–29], which makes it difficult to determine
the true dissipation rate from coarse-grained field theo-
ries. Microscopic models, however, offer a more straight-
forward thermodynamic interpretation as energy dissi-
pation (heat) can be determined directly from entropy
production rate at the single-particle level.

Here, we investigate the energy dissipation of the active
Ising model (AIM) [11, 12] which describes a lattice gas of
Ising spins with ferromagnetic alignment and biased dif-
fusion. The energy dissipation can be decomposed into

two contributions, namely the cost of self-propulsion and
an additional amount of dissipation which arises from
spin-spin interaction that is responsible for alignment.
The flocking phase emerges when the spin-spin alignment
strength is increased above a critical value. As the align-
ment strength increases, the dissipation of self-propulsion
stays constant while the alignment dissipation reaches its
maximum exactly at the flocking transition point with
a cusp singularity (divergent second derivative) in the
thermodynamic limit (fixed density and infinite volume).
To understand these results, we analytically solve a re-
duced AIM with only two sites. The two-site model can
be considered a coarse-grained version of the AIM and
it captures the essential behaviors of the energy dissipa-
tion, most notably the cusped maximum at the flocking
transition. Our study reveals an energy-speed-sensitivity
trade-off in flocking, which relates the dissipation rate of
the system to the speed and sensitivity of the flocking
phase. The state-space probability flux is also investi-
gated in the flocking and non-flocking phases, which sug-
gests a possible analogy to phase transition in a system
of interacting dipoles.

Dissipation in the active Ising model (AIM).
The 2D AIM describes N particles on a Lx × Ly lattice
with periodic boundary conditions. Each particle car-
ries an Ising spin s = ±1, and the number of ± spins
on site (i, j) is denoted by n±i,j (no volume exclusion).
The system follows continuous-time Markovian dynam-
ics including flipping (local alignment) and hopping (self-
propulsion). Each particle can flip its spin from s to
(−s) at rate ωe−βE0smi,j/ρi,j , where mi,j = n+

i,j − n−i,j
and ρi,j = n+

i,j + n−i,j are the local magnetization and

density, respectively. ω−1 sets the flipping timescale. E0

measures the strength of the spin-spin alignment inter-
action, and β is the inverse temperature which is set to
1. Each spin can also hop to one of the four neighboring
sites, at rate D(1 + sε) to the right, D(1− sε) to the left,
and D to up and down. The flipping dynamics obeys
detailed balance according to the Hamiltonian of a fully-
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connected (mean-field) Ising model, but the hopping dy-
namics breaks detailed balance and drives the system out
of equilibrium. With ε 6= 0 and large enough E0 and/or ρ,
the system exhibits collective flocking behavior [11, 12],
as characterized by a nonzero mean flocking speed (order
parameter) v = 2Dε 〈s〉 in the x-direction.

Two equivalent approaches are employed to calculate
the steady-state entropy production (energy dissipation)
rate. In the first method, the average dissipation rate
is calculated from the ratio of forward and backward re-
alizations of a sufficiently long trajectory (assuming er-
godicity) obtained by simulating the AIM dynamics [30].
The second approach considers the different spin config-
urations (

{
n±i,j
}

) as states of a reaction network with
flipping and hopping as the two types of transitions be-
tween different states. Once the AIM reaction network
reaches its nonequilibrium state state (NESS), the dissi-
pation rate can be determined by following the standard
procedure for computing entropy production rate of reac-
tion networks [31, 32]. These two approaches are equiva-
lent. The former is suited for the numerical simulation of
the full AIM, and the latter is used to analytically solve
the two-site AIM for mechanistic interpretation.

A finite amount of energy dissipation is needed to drive
the system sufficiently away from equilibrium to gener-
ate flocking behavior. As shown in Fig. 1A, a nonzero
flocking speed v can be achieved by increasing ε at fixed
E0, which also increases the total dissipation rate Ẇtot.
The flocking motion does not emerge until Ẇtot is above
a certain (nonzero) threshold.

The total dissipation rate can be decomposed into con-
tributions from the two types of transitions: Ẇtot =
Ẇm + Ẇa, where Ẇm and Ẇa correspond to the dissipa-
tion rates due to motion (hopping) and alignment (flip-
ping) of the particles, respectively. Since each particle
moves at an average speed v0 = 2Dε and each step along
the bias direction costs energy ln 1+ε

1−ε , the resulting dissi-

pation rate for motion is simply Ẇm = Nv0 ln 1+ε
1−ε . The

alignment dissipation Ẇa can be calculated by summing
up the cost of all flipping events during a sufficiently long
time interval τ (after the system reaches steady-state):

Ẇa = lim
τ→∞

1

τ

∑
0<t<τ

2E0
1−mi,js

ρi,j
. (1)

Each event flips a spin s to (−s) on site (i, j), which
has local magnetization mi,j and local density ρi,j (see
Supplementary Information (SI) for details). It will be
convenient to henceforth refer to the nondimensionalized
alignment dissipation rate ẇa = Ẇa/(2ωE0) as the align-
ment dissipation.

The motion dissipation rate Ẇm is responsible for driv-
ing the self-propulsion of the particles, which is inde-
pendent of the alignment dynamics. As expected, Ẇm

vanishes for the equilibrium Brownian motion without
bias (ε = 0) and increases with the bias ε. For the ex-
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Ẇtot

0

20

40

60

80

c

v = 0.80
v = 0.90
v = 1.00
v = 1.10

increase ϵ

FIG. 1. (A) The average flocking speed v versus the total

dissipation Ẇtot for fixed values of E0 and increasing ε. (B)
The average flocking speed (blue) and alignment dissipation
(purple) for ε = 0.3. The red dashed line is the transition
point Ec above which v > 0. The inset shows the exponential
decay of dissipation at large E0. Lx = 300, Ly = 100, ρ̄ =
N/(LxLy) = 5, D = 1, ω = 1.

treme case ε→ 1, the hopping motion is irreversible and
Ẇm →∞. The origin of the alignment dissipation Ẇa is
more subtle. Although the local spin flipping dynamics
obeys detailed balance, the local spin system at a given
site is driven out of equilibrium by the continuous injec-
tion and ejection of new spins from its neighboring sites
due to the transport process and a continuous dissipa-
tion rate Ẇa is needed to drive the spin alignment to
maintain the flocking order. As a result, Ẇa depends
on both the alignment strength (E0) and the particle’s
key transport properties in particular the motion bias ε
and the relative timescale D/ω. Next, we investigate how
the flocking behavior and dissipation rates depend on the
these key control parameters of the system (E0, ε, D/ω),
from which we aim to uncover possible cost-performance
relationship of the flocking behavior.

A cusped dissipation maximum at the flocking
transition. For a fixed bias ε, the system remains disor-
dered (v = 0) until E0 is increased above a certain thresh-
old Ec (Fig. 1B). The alignment dissipation ẇa increases
linearly in the disordered phase and decreases monoton-
ically in the flocking phase (exponentially at large E0

as shown by the inset). Remarkably, it reaches maxi-
mum exactly at the transition point Ec in the form of
a cusp. The value of ẇa is continuous across the transi-
tion, but its derivative dẇa

dE0
changes abruptly from pos-

itive to negative across Ec forming a cusp at its maxi-
mum. Since Ẇm stays constant, the same cusped maxi-
mum behavior also exists for Ẇtot. Extensive numerical
simulations find this behavior to be general, regardless
of the bias ε or the relative timescale set by D/ω (see
SI). The critical Ec decreases with ε and increase with
ω, but it always coincides with the maximum of ẇa. The
alignment dissipation can be decomposed into the prod-
uct of the frequency of flipping events ṅf and the mean
energy cost per flip w̄f = ẇa/ṅf . At the transition point,
they both have continuous values but discontinuous first
derivatives, which results in the cusp of ẇa (see SI).

As discussed previously, the key to understanding
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FIG. 2. (A) The effective free energy landscape demonstrates
the existence of a nonequilibrium phase transition. N = 50,
D = ω = 1. (B) The alignment dissipation: solid lines, two-
site AIM with different finite N ; dashed line, the infinite N
solution of the two-site AIM; dots, the full AIM (Lx = 300,
Ly = 100). The full AIM curve has been normalized in the
x direction by the critical Ec and in the y direction by its
maximum. The inset shows that the curvature at the two-
site dissipation maximum diverges with N , leading to a cusp
at infinite N .

the alignment dissipation is how the transport of spins
from/to neighboring sites drives the local spin system
out of equilibrium. However, it is difficult to understand
the full AIM with a large system size due to the numerous
degrees of freedom. Next, we investigate the alignment
dissipation in a reduced AIM with the minimal number
of sites that allows transport of active spins.

The two-site AIM shows the cusped maximum
of flocking dissipation. We consider a special case of
the AIM with only two sites (Lx = 2 and Ly = 1), which
is the minimum system size needed to drive the AIM out
of equilibrium to produce flocking behavior. Conceptu-
ally, the two-site AIM can be considered as the result
of iterative coarse-graining of the full AIM following the
real space renormalization group approach [33, 34] until
only two sites remain.

The model is fully characterized by the total number
of spins N and three state variables (a0, a1, b1) where a0

is the total number of + spins; a1 and b1 correspond to
the number of + and − spins on site 1, respectively. The
dynamics of the probability distribution P (a0, a1, b1) is
governed by the master equation:

dP (a0, a1, b1)

dt
= LP (a0, a1, b1), (2)

where L is a linear operator capturing the transitions,
which can be expressed as a N3 ×N3 matrix (see SI for
details). The steady-state distribution P s(a0, a1, b1) can
be found by solving LP s(a0, a1, b1) = 0 subject to nor-
malization

∑
a0,a1,b1

P s(a0, a1, b1) = 1, and can be used
to compute all statistical properties of the system, e.g.,
the average total magnetization 〈m〉 =

∑
a0,a1,b1

(2a0 −
N)P s(a0, a1, b1).

For a finite N , the phase transition point Ec can
be determined by computing the effective free en-
ergy landscape F (m) = − lnP (m) where P (m) =

∑
a0,a1,b1

δ(2a0−N−m)P s(a0, a1, b1) is the steady-state
distribution of the total magnetization m. As shown in
Fig. 3A, as E0 increases, the disordered state m = 0
goes from stable (F ′′(0) > 0) to unstable (F ′′(0) < 0),
which indicates the emergence of flocking. The differ-
ence between the transition point Ec (determined from
F ′′(0) = 0) and the position of the alignment dissipation
maximum (Em = arg maxE0

ẇa) vanishes with at infinite
N (see SI), consistent with the dissipation maximum at
flocking transition found in the full AIM. Moreover, the
curvature at the peak ∂2

E0
ẇflip

∣∣
E0=Em

increases with N

(Fig. 3B inset) and it is projected to diverge in the infinite
N limit, which is consistent with the cusped dissipation
maximum observed in the full AIM.

In the infinite N limit, the steady-state probability P s

can be obtained analytically by assuming time scale sep-
aration D � ω. The assumption is not essential to the
results (see SI for numerical evidence), but it enables fac-
torization of the probability distribution P s

P s(a0, a1, b1) = P (m)

(
a0

a1

)(
N − a0

b1

)
, (3)

to analytically obtain the effective free energy landscape:

F (m)

N
= z ln z+(1−z) ln (1− z)+2E0z(1−z)+O(N−1)

(4)
where z = a0/N = (N +m)/(2N) is the fraction of spin
up (see SI for derivation). The flocking transition takes
place at Ec = 1, where the most probable state (saddle
point) goes from the disordered state (z = 1

2 ) to the
flocking state with z = z?(6= 1

2 ) where z? is determined
by

1

2(1− 2z?)
ln

1− z?
z?

= E0, (E0 > 1) (5)

which has two solutions z? and (1− z?) corresponding to
flocking leftwards and rightwards, respectively. Although
the free energy is equivalent to that of the mean-field
Ising model, the system continuously dissipates energy
due to non-vanishing state-space fluxes. The fluxes asso-
ciated with flipping give the alignment dissipation ẇa:

ẇa =
1

2ωE0

∑
flip

(J+−J−) ln
J+

J−
= N 〈w1〉+〈w0〉+O

(
N−1

)
,

(6)
where w0,1 are functions of (a0, a1, b1) and parameters,
and 〈w〉 =

∑
wP s means averaging over the steady-state

probability distribution, which can be calculated using
the saddle-point method. Importantly, the mean-field
Ising P s will cause any direct evaluation of dissipation at
the saddle point to vanish. The leading order contribu-
tion comes from expanding w near the saddle point to the
second order, which leads to 〈w0,1〉 ∼ O(N−1). There-
fore, the dominating term in ẇa comes from expanding
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w1 near the saddle point:

ẇa =
N

2

[
∂2w1

∂a2
1

〈
(a1 − a?1)

2
〉

+
∂2w1

∂b21

〈
(b1 − b?1)

2
〉]

=

{
E0, 0 < E0 < Ec(= 1)

8E0[z?(1− z?)]3/2, E0 ≥ Ec
,

(7)

where both derivatives are evaluated at the saddle point
(a?0, a

?
1, b

?
1) = (z?N, z?N/2, (1− z?)N/2). It is clear from

Eq. 7 that ∂E0
ẇa is discontinuous at the critical point

(E0 = Ec) because ∂E0z
? is discontinuous there. Quan-

titatively, we have ∂E0ẇa|E0=1− = 1 and ∂E0ẇa|E0=1+ =
−3.5, which shows that ẇa (red dashed line in Fig. 2B)
exhibits a cusped maximum exactly at Ec = 1. It is also
interesting to note from Eq. 7 that the alignment energy
cost ẇa depends on variance of the local spin number
fluctuations (

〈
(a1 − a?1)2

〉
and

〈
(b1 − b?1)2

〉
), which are

driven by the transport process.
To make a direct comparison between the two-site AIM

and the full AIM, we rescale E0 by Ec, normalize the
dissipation by its maximum, and plot them against each
other in Fig. 2B. The two models agree exactly in the
disordered phase where dissipation grows linearly with
E0 as well as deep in the flocking phase where dissi-
pation decays exponentially to zero. The cusped max-
imum at transition is also in good agreement, evident
from the discontinuity of the slope. The small difference
at E0 slightly above Ec can be explained by the differ-
ence in the order of the phase transition. The first-order
transition found in the full AIM becomes second-order
in the two-site AIM, which can be understood from the
RG perspective where coarse-graining eliminates phase-
coexistence by washing out the phase with the smaller
volume fraction.

One hallmark of nonequilibrium systems is the exis-
tence of steady-state divergence-free probability fluxes
(cycles) in state space, which play a central role in
nonequilibrium information processing such as adapta-
tion [14] and proofreading [15, 20, 35]. These persistent
fluxes are also the origin of steady-state energy dissipa-
tion [31, 32, 36, 37]. Here, we consider how the fluxes are
related to the flocking order and the energy dissipation.
Fig. 3A&B show the flocking dissipation density and the
fluxes in the (m,∆ρ) plane in the non-flocking and flock-
ing phases, respectively, where ∆ρ = 2(a1 + b1) − N is
the density difference between the two sites. In both
phases, the dissipation comes from the uniform config-
uration near ∆ρ ∼ 0. The dissipation is concentrated
around m = 0 in the non-flocking phase and at large |m|
in the flocking phase. The divergence-free fluxes form
vortices related to each other by symmetries (between
the two sites and between spin up and down). In the
non-flocking phase, there are four vortices that form a
tight quadrupole, which can be considered as a bound
pair of anti-parallel dipoles (see inset in Fig. 3A). In the
flocking phase, the quadrupole splits into two dipoles sep-
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FIG. 3. The alignment dissipation density (heatmaps) and
probability fluxes (white arrows) of the two-site model in (A)
non-flocking phase (E0 = 0.6) and (B) flocking phase (E0 =
1.4). The insets show vorticity of probability fluxes. N = 50,
D = ω = 1.

arated in the m direction, each accompanied by a smaller
anti-parallel dipole (see inset in Fig. 3B). The flocking
transition is thus analogous to the unbinding of a pair of
dipoles. Both confined and free dipoles lead to low dissi-
pation, but high dissipation occurs during the transition.
This analogy is reminiscent of the mapping between the
Kosterlitz-Thouless phase transition and the Coulomb
gas [38–40], where the binding/unbinding of topologi-
cal defects can be mapped to those of Coulomb charges.
Here, the charges always appear in dipoles as active spins
visit the two sites alternatively. Therefore, we specu-
late that the analogy could be the confinement/release
of interacting dipoles with their interactions governed by
alignment strength (E0) and motion bias (ε).

The energy-speed-sensitivity trade-off. The
flocking of interacting particles is conceptually analo-
gous to the synchronization of coupled oscillators [41, 42],
which can be understood as flocking in the state (phase
of the clock) space. In both cases, an extra energy dis-
sipation is needed to maintain coherence among individ-
ual subsystems (spins/oscillators) that are already out of
equilibrium. However, the dissipation of these two sys-
tems exhibits different behaviors. For coupled oscillators,
the dissipation increases with the order parameter, mean-
ing that it is very costly to maintain a system of highly
coupled (and therefore synchronized) oscillators [42]. In
the AIM, however, dissipation peaks exactly at the tran-
sition and decreases with interaction (E0) in the flocking
phase. At large E0, the highly ordered flock requires
a smaller energy to maintain. The difference between
the two behaviors stems from the alignment mechanisms.
The active spins align locally, which effectively synchro-
nizes their velocities. The coupled oscillators are synchro-
nized by exchanging phases, which corresponds to simul-
taneously displacing pairs of particles in the AIM. This
non-local interaction couples the alignment cost to the
cost of motion (i.e. advancing the individual clocks), lead-
ing to a higher dissipation in the ordered phase. These
analyses suggest that compared to exchanging position,
local alignment of velocity is an energetically more favor-
able way of maintaining the order in a system of active
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AIM. (A) Contours for constant v in the (ε, E0) plane. (B)
The total dissipation and sensitivity along different v con-
tours. N = 40, D = ω = 1.

particles.

It may seem surprising that natural flocks do not al-
ways reside in the strong interaction (large E0) regime
which offers the benefits of both higher ordering and
lower dissipation. Starling flocks, for example, are sug-
gested to behave like critical systems [43]. A potential
explanation is the need for high sensitivity, which in-
creases as the system approaches its flocking transition.
We characterize sensitivity by the magnetic susceptibil-
ity χ of the AIM. In AIM, there are many choices of
parameters (ε, E0) to achieve any given flocking speed v
as shown in Fig. 4A. For a given v, the total dissipation is
at its minimum in the limit of E0 →∞ and ε→ v/(2D).
However, this minimum cost system at E0 =∞ has zero
sensitivity (χ = 0). In general, sensitivity can be in-
creased by decreasing E0, which requires increasing ε in
order to maintain a fixed v (Fig. 4A). As a result, Ẇm and
thereby the total dissipation increases. Fig. 4B demon-
strates this trade-off whereby enhancing sensitivity at a
constant flocking speed necessarily increases dissipation.
Similarly, for a given sensitivity, increasing the flocking
speed also requires more dissipation; for a given dissipa-
tion, increasing speed leads to decrease of sensitivity (see
SI for analytical expressions). These relations constitute
an energy-speed-sensitivity trade-off, which places nat-
ural flocks at some intermediate regime that maximizes
the overall fitness.

Discussion and future directions. It is quite re-
markable that highly nontrivial characteristics of the dis-
sipation profile such as the cusped maximum at the crit-
ical point can be captured and explained by the simple
two-site AIM. Given that the two-site AIM can be con-
sidered as a coarse-grained version of the full AIM, it
will be interesting to investigate what is the appropriate
coarse-graining procedure that preserves the dissipation
characteristics in particular the cusped maximum behav-
ior, and whether there is scaling law for the dissipation
as suggested by recent studies of general reaction net-
works [27–29]. Another possible direction to explore is
to extend this study to flocking theories with continu-

ous symmetry and off-lattice models [6–8]. Finally, the
energy-speed-sensitivity trade-off uncovered in this study
may provide a useful perspective for understanding dy-
namics of natural flocks and designing optimal control of
artificial flocks.
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