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Biomolecular condensates frequently rely on membrane interactions for recruitment, localiza-
tion, and biochemical substrates. Many of these interactions are mediated by membrane-anchored
molecules such as proteins or specific lipids, which we refer to as “mobile tethers” since they can
typically diffuse within the membrane while still interacting with the condensate. The presence
of mobile tethers creates a surface with dynamic and spatially inhomogeneous wetting properties
that are typically overlooked by traditional wetting theories. Here, we propose a general theoretical
framework to study how mobile tethers impact both equilibrium and dynamic properties of conden-
sate wetting. We show that a favorable tether-condensate interaction leads to tether enrichment
at the condensate-membrane interface, which modifies the equilibrium surface tension and contact
angle. Increasing tether abundance on the membrane can drive transitions between wetting regimes,
with only a modest tether density and binding energy required for biologically relevant scenarios.
Furthermore, tethers modulate how condensates react to complex membrane geometries. By help-
ing condensates coat membranes, mobile tethers can facilitate condensate localization to junctions
of membrane structures, such as the reticulated membranes inside the algal pyrenoid. Both tether
abundance and mobility affect how droplets interact with complex membrane geometries, such as
droplet migration along membrane tubules of varying radii. These results provide a framework to
study the implications of tether-mediated condensate-membrane interactions for cellular organiza-
tion and function.

I. INTRODUCTION

Biomolecular condensates—intracellular compart-
ments formed via phase separation—are essential for
diverse biological processes, including gene regulation,
metabolism, and cell signaling [1, 2]. In many instances,
proper condensate function relies on interactions with
membranes [3–8]. These membrane interactions can
spatially organize condensates, concentrate interaction
partners, and facilitate access to reactants. The algal
pyrenoid exemplifies this interplay [9]: condensates en-
riched with the CO2-fixing enzyme Rubisco form around
traversing membranes that supply CO2 to enhance
photosynthetic efficiency. Conversely, condensates can
also facilitate membrane processes such as transport,
signaling, force generation, and structural remodeling.
For example, Focal Adhesion Kinase (FAK) forms
condensates on the cytoplasmic membrane, binding to
lipids at sites where focal adhesions assemble, thereby
regulating cell motility [10]. Similarly, B cell activation
involves condensation on the plasma membrane that is
essential for downstream signaling [11]. More broadly,
unraveling the dynamic relationship between conden-
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sates and membranes is proving to be essential for
understanding intracellular organization and function.
In many cases, membrane-associated condensates do

not directly wet membranes. Instead, they adhere to
membrane surfaces via tethering molecules, such as pro-
teins or specific lipids, that are anchored to the mem-
brane. In the pyrenoid of the model alga Chlamydomonas
reinhardtii, for example, pyrenoid-traversing membranes
feature tethers like RBMP1, RBMP2, and SAGA1, which
directly bind to Rubisco [12, 13]. These tether proteins
are essential for the assembly of the pyrenoid condensate
around traversing membrane tubules, a structure that is
crucial for the pyrenoid’s function in CO2 fixation. In
this case and others, elucidating how tethers mediate
condensate-membrane interactions is key to understand-
ing the structure and function of membrane-associated
condensates.
A key characteristic of these tether molecules is their

ability to diffuse laterally within the membrane. As the
condensate wets the membrane, the tethers can dynami-
cally redistribute, enriching at the condensate-membrane
interface due to favorable interactions with the conden-
sate. This creates a surface with dynamic and spatially
inhomogeneous wetting properties, which can affect both
the equilibrium and dynamic aspects of condensate wet-
ting. These effects are typically overlooked by traditional
wetting theories, which often assume static surface prop-
erties [14, 15], or theories of soft wetting, where the dy-
namics comes from substrate deformation [16]. Here, mo-
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tivated by both biological significance and theoretical in-
terest, we seek to address the general question of how
mobile tethers affect the condensate-membrane interac-
tion and wetting.

In this work, we present a general theoretical frame-
work that describes the coupled dynamics of condensates
and mobile tethers. We find that mobile tethers enrich
in the condensate-membrane interface, thereby reducing
the surface tension with the membrane and modifying the
equilibrium contact angle. By tuning the expression level
of attractive tethers, cells can drive transitions from no-
wetting to partial or complete wetting. The per-tether
binding energy required for such wetting transitions is
estimated to be modest (only a few kBT ) for typical
values of tether density and condensate surface tension.
Furthermore, mobile tethers facilitate condensate local-
ization to intersecting membrane structures, such as the
reticulated membranes inside the pyrenoid. Finally, both
tether abundance and mobility affect droplet migration
on spatially varying membrane structures such as taper-
ing tubules. Overall, our framework provides tools for
understanding the role of tether-mediated condensate-
membrane interactions in cellular organization and func-
tion.

II. RESULTS

A. A general theoretical framework for
tether-mediated wetting

We study a general theory that describes the densities
of tethers and condensates with fields ψ and ϕ, respec-
tively. A high (low) value of ϕ corresponds to a conden-
sate dense (dilute) phase. The interactions are captured
by a total free energy

βF =cψ,0

∫
dA

[
fψ(ψ) +

λψ
2
(∇ψ)2 − E(ψ, ϕ|surf)

]
+ cϕ,0

∫
dV

[
fϕ(ϕ) +

λϕ
2
(∇ϕ)2

]
,

(1)

where the first integral is over the membrane area,
and the second integral is over the bulk volume. En-
ergy is measured in units of β−1 = kBT . cψ,0 and
cϕ,0 are reference concentrations for the tether and
condensate so that the free-energy densities are non-
dimensionalized: E(ψ, ϕ|surf) captures both condensate-
tether and condensate-membrane interactions; fψ(ψ) and
fϕ(ϕ) are the free-energy densities of tethers and conden-
sates respectively; λψ and λϕ are constants associated
with interface energies.

The model encompasses a large class of systems and
interactions by allowing the free-energy densities fψ(ψ),
fϕ(ϕ), and the interaction energy E(ψ, ϕ|surf) to take any
reasonable form. By minimizing the free energy in Eq. 1,
we obtain the equilibrium concentration profile, from
which the contact angle θ can be measured (Fig. 1A–

B). To study the dynamics of wetting, we can further
prescribe conserved (model B) dynamics [17]:

∂tψ = ∇ · (Mψ∇µψ), ∂tϕ = ∇ · (Mϕ∇µϕ), (2)

where Mψ and Mϕ are mobility coefficients, and µψ =
δF/δψ and µϕ = δF/δϕ are the chemical potentials of
the tethers and condensate, respectively.
To illustrate the physical picture, we study a minimal

scenario of tether-mediated wetting. We consider a linear
interaction energy E(ψ, ϕ) = (h0 + h1ψ)ϕ, where h0 and
h1 describe condensate-membrane and condensate-tether
interactions, respectively. We use Flory-Huggins free en-
ergies for self-energies fξ(ξ) = ξ ln ξ + (1− ξ) ln(1− ξ) +
χξξ(1− ξ), with ξ ∈ {ψ, ϕ} representing the area or vol-
ume fraction of tether or condensate, respectively [18].
We set the units of free-energy densities via cψ,0kBT = 1
and cϕ,0kBT = 1, unit of length by λϕ = 1, and unit of
time by Mϕ = 1. Further assuming non-self-interacting
mobile tethers (χψ = 0, λψ = 0), we arrive at a mini-
mal model for interrogating how tethers affect condensate
wetting. We emphasize that the reported qualitative be-
haviors are generic and not sensitive to the specific choice
of the functions for free-energy densities and condensate-
tether interaction energy. It is also straightforward to ex-
tend the model to describe multi-component condensates
and/or tethers, as well as more complex interactions.

B. Mobile tethers control equilibrium wetting
properties

In classical wetting theory, the contact angle θ of a
droplet on a surface is determined by force balance at
the three-phase junction through the Young-Dupré equa-
tion [14], which relates θ to the difference of surface
tensions (Fig. 1A). In the presence of mobile tethers,
however, favorable tether-condensate interactions enrich
tethers within a wetting condensate (Fig. 1A), thereby
creating a surface with inhomogeneous wetting proper-
ties, which in turn modifies the surface tensions and the
contact angle.

Condensate phase separation creates dense and dilute
phases in the bulk, with binodal concentrations ϕl and
ϕg (as measured in volume fractions), respectively. The
concentration difference ∆ϕ = ϕl − ϕg drives the attrac-
tion of tethers to the condensate, resulting in a tether
area fraction ψl in contact with the dense phase, which
is higher than that in contact with the dilute phase ψg

(Fig. 1B). This partition of tethers reaches equilibrium
when chemical potentials are balanced: µψ,l = µψ,g,
where µψ,∗ = δF/δψ∗ for ∗ ∈ {l, g}, which leads to (see
SI Appendix for details)

ψl =
ψge

h1∆ϕ

1 + ψg(eh1∆ϕ − 1)
, (3)

where we have approximated the condensate concentra-
tions at the surface with the bulk binodal concentrations.
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FIG. 1. Mobile-tether-mediated condensate wetting of membranes. (A) Illustration of a biomolecular condensate (yellow)
interacting with mobile tether molecules (black) to wet a membrane (purple). The interaction creates a localized enrichment
of tethers around the condensate, surrounded by a lower background concentration of tethers. s, l, and g represent membrane
(“solid”), dense phase (“liquid”), and dilute phase (“gas”). The contact angle θ is determined by force balance at the three-phase
junction: σlg cos θ = σsg − σsl, where the σs are surface tensions. (B) A typical equilibrium concentration profile obtained from
numerical simulations. The condensate field ϕ (top) and tether field ψ (bottom) are plotted in cylindrical coordinates (r, z) with
axial symmetry. The thick black line indicates the flat membrane at z = 0. The black dashed curve is a spherical cap fit to the
condensate surface contour. (C) Condensate-enriched tether concentration ψl increases with bulk tether concentration ψg, for
different condensate-membrane interactions h0, consistent with theory (solid curve, Eq. 3). (D) Contact angle cos θ as a function
of tether concentration ψg for different h0 (see legend in C) agrees well with theory (solid curves, Eq. 4). (E) cos θ (Eq. 4) as
a function of condensate-tether interaction h1 and tether concentration ψg for h0 = −0.2. Contours for cos = ±1 represent
wetting transitions to complete and no wetting, respectively. In all simulations, ψ has a Dirichlet boundary condition while ϕ
has a no-flux boundary condition. See SI Appendix for details and parameters.

This agrees well with numerical simulations across a wide
range of ψg, for both repelling (h0 < 0) or attracting
(h0 > 0) interactions between the bare membrane and
the condensate (Fig. 1C).

The presence of attractive tethers reduces both surface
tensions σsl = ln(1− ψl) − h0ϕl and σsg = ln(1− ψg) −
h0ϕg. However, the decrease in σsl is more substantial
due to tether enrichment in the condensate (ψl > ψg).
This, in turn, modifies the contact angle θ, which is de-
termined by force balance at the three-phase junction:
σlg cos θ = σsg − σsl. The modified contact angle is (see
SI Appendix for details)

cos θ =
σsg − σsl
σlg

=
∆σ0 +∆σ1

σlg
, (4)

where ∆σ0 = h0∆ϕ is the surface tension difference in the
absence of tethers, and ∆σ1 = ln

[
1 + ψg(e

h1∆ϕ − 1)
]
is

the additional surface tension difference due to mobile
tethers. ∆σ1 increases monotonically with tether abun-
dance ψg and tether-condensate interaction h1. Indeed,
numerical simulations find the contact angle in simula-
tions to be in excellent agreement with Eq. 4 (Fig. 1D,

solid curves). Thus, an attractive interaction due to mo-
bile tethers can substantially modulate wetting over a
wide range of contact angles.

Wetting transitions occur at cos θ = 1, when a droplet
completely wets a membrane, and at cos θ = −1, when a
droplet detaches from a membrane (non-wetting). Teth-
ers can induce transitions between these wetting regimes:
For a repelling membrane that is initially in the non-
wetting regime (h0 < −σlg/∆ϕ), both partial wetting
[cos θ ∈ (−1, 1)] and complete wetting (cos θ = 1) regimes
can be achieved via a high enough density of attrac-
tive tethers (Fig. 1E). To reach complete wetting, the

required critical density of tethers is ψ⋆g = eσlg−h0∆ϕ−1
eh1∆ϕ−1

,

which must stay below 1 since ψ is defined in terms of
area fraction. Since ψ⋆g vanishes in the limit of large h1,
a finite density of tethers is sufficient to access all three
wetting regimes as long as the tether-condensate attrac-
tion is strong enough.

For real tether molecules, how much binding energy is
required to significantly affect wetting properties? Typi-
cally, the membrane would be slightly repulsive for poly-
mer condensates because being close to a membrane re-
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FIG. 2. Mobile tethers facilitate dynamic condensate relocalization. (A–B) Dynamics of condensate localization for tether
mobility Mψ = 1.0 (A) and Mψ = 0.1 (B). The simulation domain is a 2D system (x, y) with membranes on the left and bottom
boundaries (indicated by thick black lines). Different colors indicate concentration profiles at different times (legend), with the
condensate ϕ represented by interface contours and the tether density ψ shown in the left and bottom insets. Inset in (A) shows
the final equilibrium profile for ϕ(x, y). Black arrows indicate the time evolution of the interface contours to guide the eye. The
tether density at the boundaries is ψg = 0.05. The overall ⟨ϕ⟩ is conserved due to no-flux boundary conditions. (C) Condensate

location as quantified by the average distance from the bottom-left corner ⟨r⟩ =
∫
δϕ(x, y)

√
x2 + y2 dxdy /

∫
δϕ(x, y) dx dy,

where δϕ = ϕ− ϕg. See SI Appendix for details and simulation videos.

duces the conformational entropy of polymers, leading
to an estimated ∆σ0 ∼ −10−1kBT/nm

2 [19]. In aqueous
buffer, biomolecular condensate surface tensions are typ-
ically of the same order σlg ∼ 10−1kBT/nm

2 [20]. Thus,
to drive wetting, tethers must reduce surface tension by
the same order ∆σ1 ∼ 10−1kBT/nm

2. A typical tether
density of ng ∼ 10−2nm−2 [21] yields a required bind-
ing energy of ϵ ≈ O(1)kBT (see SI Appendix for details).
Despite being a rough estimate, these calculations show
that a modest per-tether binding energy (a few kBT ) is
sufficient to drive wetting transitions. Therefore, cells
can potentially regulate condensate wetting by tuning
the expression level of tether molecules.

C. Mobile tethers facilitate condensate localization
dynamics

Thus far, we have focused on equilibrium morpholo-
gies. How might mobile tethers affect the dynamics of
condensate formation and localization? In the alga C.
reinhardtii, for example, the pyrenoid condensate dis-
solves and reforms every cell division [22], and the new
pyrenoid centers around a reticulated region where many
membrane tubules meet. Since the reticulated region has
a high membrane area per volume, it might therefore be
able to enrich tethers more effectively than other regions
of the tubule. Hence, we hypothesize that mobile tethers
may facilitate condensate localization by enrichment in
the reticulated region.

To simply illustrate this mechanism, we study a two-
dimensional system which is bounded by membranes
on the left and bottom sides and closed on the other
two (Fig. 2). The bottom-left corner is most favorable
for the condensate since it can interact there with the
largest amount of membrane area (and therefore teth-

ers), analogous to the reticulated region in the pyrenoid.
Initially in simulations, the condensate coats part of the
membrane, and its bulk concentration is between bin-
odal and spinodal concentrations. If tethers have a high
mobility, they quickly enrich in the condensate and help
it localize to the corner (Fig. 2A). In contrast, if the
tether mobility is low, the condensate first breaks up into
smaller droplets, and only slowly relocalizes to the cor-
ner through a coarsening process (Fig. 2B). Even though
both reach the same equilibrium state, the latter process
is much slower (Fig. 2C). Thus, by helping the conden-
sate to optimize its membrane contacts, mobile tethers
can facilitate coarsening and localization with respect to
membrane structures.

D. Tether abundance and mobility affect
condensate migration on tubules

Our theoretical framework enables the study of mobile-
tether-mediated wetting of a myriad of possible mem-
brane structures, including tubes, sheets, and cristae. As
highlighted in the example above, the presence of mobile
tethers could modulate or amplify the effects of mem-
brane geometry on condensate behavior.

To illustrate such geometric effects, we consider the
dynamics of a condensate that wets a membrane tubule
of varying radius. Here we consider a (truncated) cone
geometry where the tubule radius varies linearly along
its long axis (Fig. 3A, black line), although the theoret-
ical arguments are general for other geometries as well.
When the tubule is thin (compared to V 1/3, where V is
the droplet volume), the droplet can adopt an axisym-
metric barrel-like shape that wraps around the tubule.
By contrast, the droplet can also wet only one side of
the tubule and adopt an asymmetric clamshell-like shape
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FIG. 3. Mobile tethers affect condensate migration on a tubule of varying radius. Here, we consider a (truncated) cone
geometry where the tubule radius varies linearly along its long axis, although similar results hold for other geometries as well.
(A) Time course of the condensate ϕ (top contours) and tether ψ (bottom) densities on a tubule of varying radius, in cylindrical
coordinates (r, x) where x runs along the central axis of the tubule. Curves of different colors represent different times (inset
legend) with the arrow indicating the direction of migration. The black line indicates the tubule surface. (B–C) Condensate
location as quantified by the average position ⟨x⟩ for different tether concentrations ψg for Mψ = 1.0 (B), and different tether

mobilities Mψ for ψg = 0.10 (C). (D) Migration velocity ⟨ẋ⟩ ≡ d⟨x⟩
dt

as a function of ψg for different Mψ. (E) Migration speed

|⟨ẋ⟩| as a function of Mψ for different ψg. Solid curves are fits to |⟨ẋ⟩| = (fϕ + fψ/Mψ)−1 with fϕ and fψ as fitting parameters.
See SI Appendix for details and parameters.

when the tubule is thick [23–26]. Here, we focus on the
former case, where the droplet is able to wrap around the
tubule (Fig. 3A).

We expect such an axisymmetric droplet to migrate
along the tubule, moving down the gradient of free en-
ergy until reaching a minimum-energy equilibrium posi-
tion. The equilibrium location will depend on the contact
angle θ, where a smaller θ (more wetting) favors regions
of larger radius, and vice versa. By approximating the
cross-section of the barrel-shaped droplet as circular (see
SI Appendix for numerical justification), we find that the
droplet always moves to the smallest radius for θ > π/2,
while for θ < π/2 the droplet prefers a finite radius that
scales as r ∼ V 1/3 cot θ (see SI Appendix for details). We
note, however, that if r/V 1/3 is too large, the axisymmet-
ric barrel becomes unstable and the droplet moves to wet
only one side of the cylinder (clamshell shape) [23, 26].
Nevertheless, for a droplet initialized on a relatively thin
tubule, the contact angle θ dictates whether it initially
moves to small or large radius.

Since the contact angle θ can be modulated by tether
abundance ψg (Eq. 4, Fig. 1D), we expect that ψg can af-
fect the equilibrium location of the droplet on the tubule.
Specifically, increasing tether abundance ψg decreases θ
(Fig. 1D), thereby shifting the equilibrium location to

a larger radius. Indeed, when we initialize a droplet at
a particular location on the tubule, it migrates towards
small radius when ψg is low (large θ), but towards large
radius when ψg is high (small θ) (Fig. 3B). Increasing
tether mobility Mψ leads to faster migration (Fig. 3C),
while a very small Mψ can lead to self-trapping, pinning
the droplet and arresting migration.
These results suggest that tether abundance and mo-

bility affect different aspects of droplet migration on spa-
tially varying membrane structures: Tuning tether abun-
dance ψg can modulate the total force on the droplet
and control its preferred localization on the tubule, while
tuning tether mobility Mψ can control droplet migration
speed (Fig. 3D). In the overdamped limit, the driving
force due to the free-energy gradient (or equivalently, sur-
face tension forces) is balanced by viscous drag from both
the condensate and the tethers. Here, the drag is con-
trolled by the mobility coefficients Mϕ and Mψ. Thus,
the droplet velocity is given by:

−∂E
∂x

= γdragẋ = (γϕM
−1
ϕ + γψM

−1
ψ )ẋ, (5)

where the driving force Fdrive = −∂E
∂x ≈ −∂E

∂r
∂r
∂x is due to

the gradient of the energy of a droplet wetting a tubule
of varying radius r (see SI Appendix for details); γϕM

−1
ϕ
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and γψM
−1
ψ represent the drag due to the condensate

and the tethers, respectively. Thus, droplet speed de-
pends on tether mobility via an inverse linear relation-
ship |ẋ| = (fϕ + fψ/Mψ)

−1, with fϕ = γϕM
−1
ϕ /|∂xE|

and fψ = γψ/|∂xE|. The ratio of coefficients fψ/fϕ =
Mϕγψ/γϕ depends on tether concentrations ψg and ψl

(see SI Appendix ). This relation is in good agreement
with numerical simulations (Fig. 3E). In other words,
tethers can slow down droplet migration if they cannot
redistribute quickly enough to maintain an energetically
favorable wetting configuration as the droplet moves. In
the limit of immobile tethers (Mψ → 0), the droplet be-
comes trapped in place.

Taken together, our results show that mobile tethers
provide a mechanism to control how condensates respond
to membrane geometry by modulating both the conden-
sate’s favorable location and its migration speed.

III. DISCUSSION

Membrane proteins and specialized lipids play an im-
portant role in regulating membrane functions, including
their interaction with biomolecular condensates. How-
ever, the mobility of tethering molecules within the mem-
brane has been largely overlooked in previous studies of
condensate wetting. Here, we develop a general theoret-
ical framework for mobile-tether-mediated wetting and
show that tethering molecules can substantially modu-
late both equilibrium and dynamical aspects of conden-
sate wetting, including migration and localization. These
results suggest potential mechanisms for cells to regulate
condensate formation and organization via the expression
of mobile tethering molecules.

Our theory is relevant for a wide range of biological
systems, including the algal pyrenoid [12, 13, 27], focal
adhesion proteins [28, 29], T-cell activation [30], actin as-
sembly [31], and potentially the organization of ER exit
sites [32–34]. Since a modest tether density and per-
tether binding energy (a few kBT ) would be sufficient to
substantially affect wetting properties, it is plausible for
cells to regulate a wide range of condensates via mobile
tethering molecules. Experimentally perturbing tether-

ing molecules in cells will provide valuable insights into
their importance for these structures.
Besides providing insights into in vivo structures and

functions, our framework also makes quantitative predic-
tions that can be tested in vitro. One direct test would
be to place fluorescently tagged tethering molecules in
supported lipid bilayers (SLBs) and track the tether con-
centrations ψg and ψl as the membrane is wetted by a
condensate that is attracted to the tether molecule. Re-
peating such experiments at different tether concentra-
tions ψg would enable a quantitative test for the tether
enrichment predicted by theory (Eq. 3 and Fig. 1C). In
addition, the contact angle can potentially be measured
by confocal imaging and compared with theory (Eq. 4
and Fig. 1D).
While this work focuses on tether-mediated wetting

of a fixed membrane, our framework can be extended to
include effects such as membrane deformation [35, 36]
and hydrodynamic coupling, as well as active pro-
cesses [37], such as post-translational modification
upon wetting. In a biological context, it will also be
interesting to study how tether-mediated wetting affects
downstream signaling, which is often a nonequilibrium
process [38, 39]. Overall, our framework paves the way
for the study of how mobile-tether-mediated interactions
affect condensate morphology, dynamics, and function.
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I. THEORETICAL FRAMEWORK

As discussed in the main text, we consider a system where (three-dimensional) biomolecular condensates can interact
with a (two-dimensional) membrane. The total free energy reads:

βF = cψ,0

∫
dA

[
fψ(ψ) +

λψ
2
(∇ψ)2 − E(ψ, ϕ|surf)

]
+ cϕ,0

∫
dV

[
fϕ(ϕ) +

λϕ
2
(∇ϕ)2

]
, (S1)

where ϕ is the condensate density field and ψ is the tether density field. The first integral is over the membrane area,
while the second integral is over the bulk volume. fϕ(ϕ) and fψ(ψ) are the free-energy densities of the condensate and
tethers, respectively; E(ψ, ϕ|surf) describes the interaction energy between the condensate and the tether/membrane,
with ϕ|surf denoting the condensate density at the membrane surface. λψ and λϕ are related to the line/surface
tensions. The free energy is measured in units of β−1 = kBT . The free-energy densities (integrands in Eq. S1) are
non-dimensionalized by the factor of β and reference concentrations cψ,0 and cϕ,0, for the tether and the condensate,
respectively [1]. For qualitative analysis and for the sake of simplicity, we set cψ,0kBT = 1 and cϕ,0kBT = 1; this does
not affect the results but must be revisited when estimating the energy scales for real tethers (Sec. II).

To minimize the free energy, we prescribe the following gradient (model-B) dynamics for both the tethers and
condensate [2]:

∂tψ = ∇ · (Mψ∇µψ), ∂tϕ = ∇ · (Mϕ∇µϕ), (S2)

where Mψ and Mϕ are mobility coefficients, while µψ = δF/δψ and µϕ = δF/δϕ are the chemical potentials of the
tethers and condensate, respectively. The condensate obeys no-flux boundary condition at the membrane surface:

n̂ · ∇µϕ = 0, (S3)
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where n̂ is the unit normal vector pointing out of the membrane. Additionally, the bulk-surface interaction gives the
following wetting boundary condition:

λϕn̂ · ∇ϕ|surf = −∂ϕE(ψ, ϕ|surf), (S4)

which reflects a local change in condensate concentration near the membrane surface due to the condensate’s interac-
tion with the membrane and tethers.

While the model can be used to describe a large class of systems by allowing the free-energy densities fϕ(ϕ) and
fψ(ψ) and the interaction energy E(ψ, ϕ|surf) to take different forms, we will focus on a minimal model to illustrate
the essential physical picture.

A. A minimal model for tether-mediated wetting

For the sake of simplicity, we use Flory-Huggins free-energy densities for both the condensate and the tethers

fψ(ψ) = ψ lnψ + (1− ψ) ln(1− ψ) + χψψ(1− ψ), (S5)

fϕ(ϕ) = ϕ lnϕ+ (1− ϕ) ln(1− ϕ) + χϕϕ(1− ϕ), (S6)

with ψ and ϕ denoting the area or volume fraction of tether and condensate, respectively. χψ and χϕ are the
Flory-Huggins interaction parameters for the tether and the condensate, respectively.

We further assume a linear interaction energy (non-dimensionalized in the same way as fψ)

E(ψ, ϕ) = (h0 + h1ψ)ϕ, (S7)

where h0 and h1 describe condensate-membrane and condensate-tether interactions, respectively. The chemical po-
tentials are given by:

µψ =
δF

δψ
= ln

ψ

1− ψ
+ χψ(1− 2ψ)− λψ∇2ψ − h1ϕ|z=0, (S8)

µϕ =
δF

δϕ
= ln

ϕ

1− ϕ
+ χϕ(1− 2ϕ)− λϕ∇2ϕ, (S9)

where z is the perpendicular distance from the membrane with z = 0 indicating the membrane surface. Further
assuming for simplicity that tethers do not interact with each other and only interact with the condensate, we have
χψ = 0 and λψ = 0. The tether chemical potential then simplifies to

µψ = ln
ψ

1− ψ
− h1ϕ|z=0. (S10)

Let ϕl and ϕg denote condensate densities in the dense (liquid) phase and the dilute (gas) phase, respectively. The
corresponding tether densities in the dense and dilute phases are denoted as ψl and ψg. They are related to each
other through chemical potential balance:

µψ,l = µψ,g ⇒ ln
ψl

1− ψl
− h1ϕl|z=0 = ln

ψg

1− ψg
− h1ϕg|z=0. (S11)

Approximating the surface density ϕ|z=0 with the bulk binodal values1, we have

ln
ψl

1− ψl
= ln

ψg

1− ψg
+ h1∆ϕ, (S12)

where ∆ϕ = ϕl|z=0 − ϕg|z=0 ≈ ϕl − ϕg is the difference between binodal concentrations. Solving for ψl:

ψl =
ψge

h1∆ϕ

1 + ψg(eh1∆ϕ − 1)
, (S13)

1 The correction due to this approximation is O
(
h2
0, h

2
1

)
, which, as shown below, is a higher-order term.
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which is Eq. (3) in the main text.
The contact angle θ is given by force balance at the three-phase junction:

σlg cos θ = σsg − σsl ≡ ∆σ, (S14)

where the σs represent surface tensions. σlg is the surface tension between the dense and dilute phases in 3D and is
independent of the tether concentration. The surface tension with the membrane σs∗, which depends on the tether
density ψ, is given by computing the excess free energy (per unit area):

σs∗ = fψ(ψ∗) + E(ψ∗, ϕ∗|z=0)− µψ,∗ψ∗ +∆fexcess(ψ∗, ϕ∗) ≡ σ̃s∗ +∆fexcess(ψ∗, ϕ∗), (S15)

where ∗ ∈ {l, g} denotes the dense (“liquid”) or dilute (“gas”) phase, respectively. µψ,∗ = ln ψ∗
1−ψ∗

− h1ϕ∗|z=0 is the

tether chemical potential. ∆fexcess(ψ∗, ϕ∗) is defined below and will prove to be higher order in h0 and h1. We define
σ̃s∗ to be the sum of the first three terms, which is given by

σ̃s∗ =fψ(ψ∗) + E(ψ∗, ϕ∗|z=0)− µψ,∗ψ∗ (S16)

=ψ∗ lnψ∗ + (1− ψ∗) ln(1− ψ∗)− (h0 + h1ψ∗)ϕ∗ − ψ∗

(
ln

ψ∗

1− ψ∗
− h1ϕ∗

)
(S17)

= ln(1− ψ∗)− h0ϕ∗. (S18)

The surface tension difference due to these terms reads

∆σ̃ ≡ σ̃sg − σ̃sl = h0(ϕl − ϕg) + ln
1− ψg

1− ψl
= h0(ϕl − ϕg) + ln

[
1 + ψg(e

h1∆ϕ − 1)
]
≡ ∆σ0 +∆σ1, (S19)

where ∆σ0 = h0(ϕl − ϕg) = h0∆ϕ is the surface tension difference in the absence of tethers, and ∆σ1 =
ln

[
1 + ψg(e

h1∆ϕ − 1)
]
is the additional surface tension difference due to mobile tethers. We have substituted ψl

with Eq. S13. Note that to the leading order, we have ∆σ̃ = O(h0, h1).
∆fexcess(ψ∗, ϕ∗|z=0) is the excess free-energy density due to a boundary layer of condensate at the membrane

surface. Let ϕ̂∗(z) denote the condensate concentration at distance z from the membrane in the dense (∗ = l) and

dilute (∗ = g) phases. Near the membrane, ϕ̂∗(z) deviate from the binodal concentrations ϕ∗, leading to excess free
energy per surface area:

∆fexcess(ψ∗, ϕ∗) =

∫
dz1

[
gϕ(ϕ̂∗(z1)) +

λϕ
2
(∂zϕ̂∗(z1))

2 − gϕ(ϕ∗)

]
, (S20)

where ϕ∗ denotes the binodal concentration, and gϕ(ϕ) = fϕ(ϕ) − µϕϕ is the Gibbs free energy of the condensate.

The concentration profile ϕ̂∗(z1) is the solution to the following boundary value problem:

∂zµϕ̂(z) = 0, z > 0, (S21)

λϕ∂zϕ̂∗(z) = −(h0 + h1ψ∗), z = 0, (S22)

lim
z→∞

ϕ̂∗(z) = ϕ∗. (S23)

In practice, we find that the excess free energy density is negligible compared to the other terms. This can be explained

by the following scaling argument: To the leading order in δϕ∗(z) = ϕ̂∗(z)− ϕ∗, the excess free energy is

∆fexcess ∼
∆z

2
·
[
λϕδϕ

′
∗(z)

2 + g′′(ϕ)δϕ∗(z)
2
]
= O(δϕ2∗), (S24)

where ∆z is the boundary layer thickness, and we have used g′(ϕ) = 0 at the binodal concentration. From the wetting
condition [Eq. S22], we find δϕ∗ = O(h0, h1). Hence, the excess free energy becomes quadratic in the interaction
parameters:

∆fexcess = O
(
h20, h

2
1

)
, (S25)

which is a higher-order term compared to ∆σ̃.
Putting everything together:

cos θ =
σsg − σsl
σlg

≈ ∆σ̃

σlg
=

∆σ0 +∆σ1
σlg

=
h0(ϕl − ϕg) + ln

[
1 + ψg(e

h1∆ϕ − 1)
]

σlg
, (S26)
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which produces Eq. (4) in the main text.
To achieve complete wetting (cos θ = 1), the critical tether density ψ⋆g is given by

σlg = h0∆ϕ+ ln
[
1 + ψ⋆g(e

h1∆ϕ − 1)
]
⇒ ψ⋆g =

eσlg−h0∆ϕ − 1

eh1∆ϕ − 1
. (S27)

II. ESTIMATING THE TETHER BINDING ENERGY REQUIRED TO DRIVE WETTING
TRANSITION

Here, we estimate the value of ∆σ0, which is the dilute/dense phase surface tension difference due to the condensate-
membrane interaction. Typically, a membrane would be slightly repulsive for a polymer condensate because being close
to the membrane reduces the conformational entropy of the polymers. Thus, we can estimate the magnitude of this
effect by considering polymer “blobs” close to the membrane. Each “blob” would contribute 1kBT , and the number of
polymer “blobs” per unit area could be estimated by 1/R2

g with Rg being the radius of gyration. For an intrinsically

disordered protein (IDP) of length ∼ 100 a.a., we estimate Rg ∼ 3nm [3], and therefore 1/R2
g ∼ O(10−1)nm2. Thus,

the surface tension due to entropic repulsion is of the order ∆σ0 ∼ −O(10−1)kBT/nm
2.

On the other hand, previous micropipette aspiration found that the typical biopolymer condensate surface tension
σlg is at most O(1)mN/m, or equivalently O(10−1)kBT/nm

2 [4]. Thus, to achieve complete wetting, the additional
surface tension difference due to tethers must also reach ∆σ1 = σlg −∆σ0 ∼ O(10−1)kBT/nm

2.
To estimate the corresponding binding energy relevant for real tethers, we recall that the surface tension was

renormalized by cψ,0kBT , with a close-packed tether density set by cψ,0. Thus, in the limit of dilute tethers ψg =
cg/cψ,0 ≪ 1, where cg is the (dimensional) tether density in contact with the dilute phase, we have

∆σ1
kBT

= cψ,0 ln
[
1 + ψg(e

h1∆ϕ − 1)
]
≈ cψ,0ψg(e

h1∆ϕ − 1) = cg(e
ϵ − 1), (S28)

where cg ∼ 10−2nm2 [5] is the dimensional tether number density, and ϵ = h1∆ϕ is the energy reduction per tether
when inside the condensate, measured in units of kBT . This leads to

ϵ = ln

(
1 +

∆σ1
cgkBT

)
∼ ln [1 +O(10)] ∼ O(1) (kBT ), (S29)

which suggests that a binding energy of a few kBT per tether is sufficient to modulate equilibrium condensate-
membrane wetting properties.

III. DROPLET MIGRATION ON A TUBULE OF VARYING RADIUS

A. Equilibrium position of a droplet

In this section, we consider the free energy of a droplet as it wets a membrane tubule in an axisymmetric configuration
that wraps around the tubule. If the radius of the tubule is slow-varying compared to the droplet size, we can
approximate the tubule locally as a cylinder of radius r (Fig. S1A). Thus, the free energy of the droplet E(V, r) is
determined by its volume V and the local tubule radius r.
The droplet adopts a barrel-shaped constant-mean-curvature surface when wetting the cylinder [6]. For analytical

tractability and motivated by our numerical simulations (Fig. S1B), we approximate the cross-section profile as a
circular cap (Fig. S1A). The radius R is determined by constraining the volume of the droplet:

V (R, r, cos θ) =
1

6
πR2(12θr − 6r sin 2θ + 9R sin θ +R sin 3θ − 12θR cos θ), (S30)

where θ is the contact angle. The total surface free energy is given by

E(R, r, cos θ) = Aslσsl +Asgσsg +Algσlg = (A0 −Asl)σsg +Aslσsl +Algσlg (S31)

= E0 +Asl(σsl − σsg) +Algσlg (S32)

= E0 + σlg(Alg −Asl cos θ), (S33)
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FIG. S1. Equilibrium position of a droplet on a tubule of varying radius. (A) Illustration of the ansatz used for computing the
free energy of a droplet of volume V wetting a cylinder of radius r with contact angle θ. This is a cross-sectional view where
the droplet assumes a circular cap shape with radius R. (B) Snapshot of the condensate profile ϕ (top) and tether profile ψ
(bottom) for a droplet migrating on a tubule (membrane indicated by the black line) obtained from numerical simulation. The
red dashed curve shows that a circular fit is in good agreement with the interface contour (black dashed curve). (C) Contact

angle cos θ as a function of tether density ψg. (D) Normalized equilibrium tubule radius r̃eq ≡ req/V
1/3 as a function of tether

density ψg. In (C) and (D), blue curves are theoretical predictions (Eq. S26 and Eq. S38), and red data points simply indicate
the theoretical predictions evaluated at the ψg values used in Fig. 3 in the main text. Parameters: h0 = −0.2, h1 = 1, χϕ = 2.5,
λϕ = 1, χψ = 0, λψ = 0. For (B), ψg = 0.20 and mobilities Mϕ = 1.0 and Mψ = 1.0.

where A0 is the total membrane area, Asl, Asg, and Alg are the areas of the membrane-condensate, membrane-solvent,
and condensate-solvent interfaces, respectively. The last line follows from the force balance at the three-phase junction
(Eq. S14). Applying our droplet shape ansatz, we have

E(R, r, cos θ) = 4πR(θr − cos θ(r sin θ + θR) +R sin θ). (S34)

The equilibrium position of the droplet is determined by the req that minimizes the free energy E(V, r) for a fixed
droplet volume V . The constrained optimization problem can be solved by introducing a Lagrange multiplier λ:

L(R, r, cos θ, λ) = E(R, r, cos θ)− λ(V (R, r, cos θ)− V0). (S35)

The optimum is given by

∂L
∂R

= 0,
∂L
∂r

= 0, V (R, r, cos θ) = V0. (S36)

The solutions are:

r̃ ≡ r/V 1/3 =

(
3

4π

)1/3

cot θ, R̃ ≡ R/V 1/3 = r̃/ cos θ =

(
3

4π

)1/3

csc θ, λ =
2

R
. (S37)

Since the radius r must be positive, this solution is only physical for θ ∈ (0, π/2). For θ ∈ (π/2, π), the surface energy
increases monotonically with r, and the droplet would prefer to reside at the smallest radius possible. Putting these
results together, we arrive at the equilibrium radius of the tubule where the droplet prefers to locate:

req =

{
V 1/3

(
3
4π

)1/3
cot θ, θ ∈ (0, π/2),

0, θ ∈ (π/2, π).
(S38)

Hence, tuning tether abundance ψg (and thus the contact angle θ) can control the equilibrium position of the droplet
on a tubule of varying radius (Fig. S1C,D). Theoretical predictions for the ψg values used in Fig.3 in the main text are
indicated by red data points: for ψg = 0.05, 0.10, the droplet moves to the left to decrease r; for ψg = 0.15, 0.20, 0.25,
the droplet moves to the right to increase r.

B. Droplet migration velocity

As a droplet migrates on a tubule, its velocity ẋ is determined by the balance between the driving force due to the
surface energy gradient and the drag force:

−∂E
∂x

= γdragẋ = (γϕM
−1
ϕ + γψM

−1
ψ )ẋ, (S39)
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where γdrag is the drag coefficient, which we assume to be inversely proportional to the mobility coefficients Mϕ and
Mψ of the condensate and tethers, respectively. γϕ and γψ are constants that depend on the concentration profile of
the condensate and tethers, respectively.

As derived in the previous section E(V, r) depends on both the droplet volume V and the local tubule radius r,
which gives the driving force F = −∂E

∂x = −∂E
∂r

∂r
∂x . The velocity ẋ depends on Mψ via an inverse linear relation:

ẋ =
(
fϕ + fψM

−1
ψ

)−1

, (S40)

where

fϕ =
γϕ
Mϕ

·
(
−∂E
∂r

∂r

∂x

)
, fψ = γψ ·

(
−∂E
∂r

∂r

∂x

)
. (S41)

Estimating fϕ and fψ requires computing the drag coefficients γϕ and γψ, which we turn to next.
The drag coefficient is determined from the total dissipation:

P = γẋ2 =

∫
dV

∣∣∣J⃗ϕ
∣∣∣
2

Mϕ
+

∫
dA

∣∣∣J⃗ψ
∣∣∣
2

Mψ
=

∫
dV Mϕ|∇µϕ|2 +

∫
dAMψ|∇µψ|2, (S42)

where J⃗ϕ = −Mϕ∇µϕ and J⃗ψ = −Mψ∇µψ are the fluxes of the condensate and tethers, respectively. Further
integrating by parts, we have

P = −
∫

dV Mϕµϕ∇2µϕ −
∫

dAMψµψ∇2µψ. (S43)

For a traveling wave solution, we have ∂tϕ = −ẋ∂xϕ and ∂tψ = −ẋ∂xψ. Thus, their (model B) dynamics satisfy

∂tψ = −ẋ∂xψ =Mψ∇2µψ, ∂tϕ = −ẋ∂xϕ =Mϕ∇2µϕ. (S44)

µϕ,ψ are solutions to Poisson equations with source terms −ẋ∂xϕ/Mϕ and −ẋ∂xψ/Mψ, respectively. We can rescale
the chemical potentials by the strength of the source:

µϕ =
ẋ

Mϕ
µ̃ϕ, µψ =

ẋ

Mψ
µ̃ψ, (S45)

where µ̃ϕ and µ̃ψ are solutions to the Poisson equations with unit source terms:

∇2µ̃ϕ = −∂xϕ, ∇2µ̃ψ = −∂xψ. (S46)

Substituting these back into the expression for P , we have

P = −
∫

dV ẋ2M−1
ϕ µ̃ϕ∇2µ̃ϕ −

∫
dA ẋ2M−1

ψ µ̃ψ∇2µ̃ψ, (S47)

= ẋ2
(∫

dV M−1
ϕ µ̃ϕ∂xϕ+

∫
dAM−1

ψ µ̃ψ∂xψ

)
= γdragẋ

2, (S48)

which gives the coefficients

γϕ =

∫
dV µ̃ϕ∂xϕ =

∫
dV (−∂xµ̃ϕ)ϕ, (S49)

γψ =

∫
dA µ̃ψ∂xψ =

∫
dA (−∂xµ̃ψ)ψ. (S50)

Since the chemical potential gradients −∂xµ̃ϕ,ψ are non-zero only at the interface region, we estimate that γϕ,ψ are
proportional to the interface area/length as well as to the concentrations:

γϕ ∼ Alg ·
∆ϕ

λϕ
ϕl, γψ ∼ Lslg ·

∆ψ

λψ
ψl, (S51)

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 28, 2025. ; https://doi.org/10.1101/2024.12.04.626804doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.04.626804
http://creativecommons.org/licenses/by-nd/4.0/


S7

0.00 0.02 0.04 0.06

ψl(ψl − ψg)

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

f ψ
/f

φ

Simulation

Linear fit

FIG. S2. Proportionality between fψ/fϕ and (ψl−ψg)ψg (Eq. S52). Blue circles are numerical results obtained from simulations
in Fig. 3E, and the red line is a linear fit excluding the point at ψg = 0.15, for which the droplet velocity is too small for an
accurate estimate of the drag coefficients.

where ∆ϕ and ∆ψ are the concentration differences across the interface, λϕ and λψ are the interface thicknesses, Alg

is the area of the condensate-solvent interface, and Lslg is the length of the three-phase contact line.
For the simulations in Fig. 3E, since the geometry and the condensate concentrations remain approximately un-

changed, the main effect of changing tether abundance ψg should be due to the ψ dependence in γψ. Thus, we
estimate:

fψ
fϕ

=Mϕ
γψ
γϕ

∝ (ψl − ψg)ψg. (S52)

This is consistent with our numerical results (Fig. S2), where we find a linear relation between fψ/fϕ and (ψl−ψg)ψg.

IV. DETAILS OF NUMERICAL SIMULATIONS

To solve the equations of motion (Eq. S2) for the condensate and tethers, we use a finite-volume numerical scheme
with first-order forward Euler time-stepping for time evolution. The condensate field ϕ obeys no-flux boundary
conditions at all boundaries in addition to wetting boundary conditions at membrane interfaces. The tether field
ψ obeys Dirichlet boundary conditions with fixed bulk tether concentration ψg. The wetting boundary condition is
prescribed using the ghost point method, where the ϕ value at each ghost point is interpolated from the two nearest
interior points that are not collinear with the ghost point. The volumes near the boundary are treated with the
cut-cell method.

For Fig. 1, the simulation was performed in cylindrical coordinates, with spatial discretization rn = nrmax

N , zm =
mzmax

M , where rmax = 60 and zmax = 40 set the system size and N = M = 128 set the spatial resolution. The
system was evolved to its equilibrium state. The contact angle was measured by fitting the contour to a spherical cap
R2 = r2 + (z − z0)

2, which gives cos θ = −z0/R0. The parameters are: χϕ = 2.5, λϕ = 1, χψ = 0, λψ = 0; h1 = 1 for
(B)–(D); ψg = 0.02 and h0 = 0 for (B); h0 = −0.2 for (E).

For Fig. 2, the simulation was performed in 2D planar coordinates, with spatial discretization xn = nxmax

N , ym =
mymax

M with xmax = ymax = 30 and N =M = 64. The parameters are: h0 = −0.2, h1 = 2, χϕ = 2.5, λϕ = 1, χψ = 0,
λψ = 0. Tether concentration is fixed at the boundary by Dirichlet boundary condition ψg = 0.05. The videos for the
dynamics are available as supplemental videos.

To quantify how fast the droplet reaches its equilibrium configuration at the lower-left corner where the two

membranes meet, we defined an average distance ⟨r⟩ =
∫
δϕ(x, y)

√
x2 + y2 dx dy /

∫
δϕ(x, y) dxdy, where δϕ = ϕ−ϕg

is the condensate concentration subtracted by the dilute phase.
For Fig. 3 (and Figs. S1 and S2), the simulation was performed in cylindrical coordinates (r, x), where the x-axis

runs along the center of the tubule. The tubule radius is given by R(x) = R0 + R1x, with R0 = 1.5 and R1 = 1/15.
Spatial discretization is given by rn = r0 +

nrmax

N , xm = mxmax

M , where r0 = 1.0, rmax = 15 and xmax = 30 set the
system size and N = 64 and M = 128 set the spatial resolution. The equations are only evolved in grid points inside
the domain [r > R(x)] with wetting boundary conditions implemented by ghost points. The average position ⟨x⟩ is
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computed from the volume inside the contour ϕ > (ϕl + ϕg)/2. Tether concentration is fixed at the boundary by
Dirichlet boundary condition at the right boundary (x = xmax). The parameters are: h0 = −0.2, h1 = 1, χϕ = 2.5,
λϕ = 1, χψ = 0, λψ = 0. For Fig. 3A, ψg = 0.20 and Mψ = 1.0; for Fig. 3B, Mψ = 1.0; for Fig. 3C, ψg = 0.10.
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